US009164807B2

a2z United States Patent (10) Patent No.: US 9,164,807 B2
Blanc et al. 45) Date of Patent: Oct. 20, 2015
(54) STATICALLY ALLOCATING SET OF TASKS (52) U.S.CL
TO PARTICULAR CLUSTER AND CPC o GOGF 9/5066 (2013.01)
DYNAMICALLY ALLOCATING EACH TASK (58) Field of Classification Search
CPC ettt GOGF 9/5066

TO DIFFERENT PROCESSING UNITS

See application file for complete search history.

WITHIN CLUSTER .
eferences Cite
(56) Refi Cited
(75) Inventors: Frédéric Blanc, Bures sur Yvette (FR);
Thierry Collette, Palaiseau (FR); U.S. PATENT DOCUMENTS
Raphaél David, Bures sur Yvette (FR); 6,467,075 BL* 10/2002 Sato et al. wooocoorcvcrrnnen 716/103
Vi.ncent David, Marc.oussis (FR); (Continued)
Michel Harrand, Saint-Egreve (FR);
Stéphane Louise, Orsay (FR); Nicolas FOREIGN PATENT DOCUMENTS
Ventroux, Bures sur Yvette (FR)
EP 1043658 10/2000
(73) Assignee: COMMISSARIAT A L’ENERGIE OTHER PUBLICATIONS
ATOMIQUE ET AUX ENERGIES International Preliminary Report on Patentability and International
ALTERNATIVES, Paris (FR) Search Report dated Apr. 6, 2009, issued in counterpart International
. Application No. PCT/EP2008/067345.
(*) Notice: Subject to any disclaimer, the term of this Ewerson Carvalho et al: “Heuristics for Dynamic Task Mapping in
patent is extended or adjusted under 35 NoC-based Heterogenous MPSoCs”, Rapid System Phototyping,
U.S.C. 154(b) by 1433 days. 18th IEEE, May 1, 2007, pp. 34-40.
(Continued)
(21) Appl. No.: 12/747,715
Primary Examiner — Meng An
(22) PCT Filed: Dec. 11,2008 Assistant Examiner — James J Lee
(74) Attorney, Agent, or Firm — Stroock & Stroock & Lavan
(86) PCT No.: PCT/EP2008/067345 LLP
§ 371 (c)(1), 57 ABSTRACT
(2), (4) Date: Dec. 28,2010 A system including a plurality of processing units for execut-
ing tasks in parallel and a communication network. The pro-
(87) PCT Pub.No.. WO02009/077429 cessing gnits are organized into clusters of units, each cluster
comprising a local memory. The system includes means for
PCT Pub. Date: Jun. 25, 2009 statically allocating tasks to each cluster of units, so that a task
of an application is processed by the same cluster of units
(65) Prior Publication Data from one execution to another. Each cluster includes cluster
management means for allocating tasks to each of its process-
US 2011/0093854 Al Apr. 21, 2011 ing units and space in the local memory for executing them, so
. L L. that a given task of an application may not be processed by the
(30) Foreign Application Priority Data same processing unit from one execution to another. The
cluster management means includes means for managing the
Dec. 14,2007 (FR) .eoceeeieeeieiiieciiieieeee 07 08740 tasks, means for managing the processing units, means for
managing the local memory and means for managing the
(51) Int.CL communications involving its processing units. The manage-
GO6F 9/46 (2006.01) ment means operate simultaneously and cooperatively.
GOG6F 9/50 (2006.01) 25 Claims, 13 Drawing Sheets
Tums] La
Mem 46 PE Mem 54
o
2 Mem 57
Mem 50 PE Mem 58
s
L Cluster Manager 60 U

| Task Manager g‘ I

PE Manager .

I

61

| Memory Manager li_:ﬂ | Com Manager

]

NoC

US 9,164,807 B2
Page 2

(56)

6,993,762
7,676,788
8,028,292
2005/0188191
2005/0251567
2006/0274973
2007/0189163
2008/0052712
2009/0031312

References Cited

U.S. PATENT DOCUMENTS

Bl1* 1/2006 Pierrecccccoeennen.

B1* 3/2010 Ousterhout et al.
B2* 9/2011 Inoueetal. ...

OTHER PUBLICATIONS

N. Ventroux: “Controle en ligne des systérnes multiprocesseaurs
hétérogeénes embarqués: élaboration et validation d’une architecture”

....... 718/102 THESE, [Online] Sep. 19, 2006, pp. 1-192
o T17/106 Ligang He et al.: “Performance Evaluation of Scheduling Applica-

718/105 tions with DAG Topologies on . . . ”, Parallel and Distributed Pro-

Al* 82005 Yoshidaetal. 713/1 cessing Symposium, Apr. 25, 2006, pp. 1-8.

Al 11/2005 Ballew

Al* 12/2006 Mohamed et al.
Al* 82007 Ozawacco.....
Al* 2/2008 Gustafsonetal.
Al* 1/2009 Mausolfetal.

Stankovic J A et al.: “The Spring Kernel: A New Paradigm for

....... 382/281 Real-Time Operating Systems™®” Operating Systems Review, vol. 23,
....... 370/230 No. 3, Jul. 1, 1989, entire document.
....... 718/101

....... 718/102 * cited by examiner

U.S. Patent Oct. 20, 2015 Sheet 1 of 13 US 9,164,807 B2

\ Controi Processor (GS)

v

Task
3 : \ Dispatcher

Shared

Memory

FU1
Space @ @ @ @

U.S. Patent Oct. 20, 2015 Sheet 2 of 13 US 9,164,807 B2

L Contro! Processor (OS)

v

\ Task

Dispatcher

12\

Shared

Memory

= | o]lo eI

N N

Ly i}
R

W/WW/W

FIG.2

U.S. Patent Oct. 20, 2015 Sheet 3 of 13 US 9,164,807 B2

] Control Processor (OS)

X

‘i\ Task

Dispatcher

Shared I I i it

Memory I |

o @l @> @I @T'

U.S. Patent

US 9,164,807 B2

Oct. 20, 2015 Sheet 4 of 13
clo | ~ cH - c2 | - ci3 -
— N0 | N1 [N2 [N3 31
[{ z______.u...,l J
//"‘
Cl4 ci5 | | ce || cr | |
— N4 [N5 [N6 [N7LL
cig c19 Cl10 Cit1
— N8§ | N9 IN1C IN11L]
Ci2 ci13 cli4 CHs
r-le2 INA3 [Ni4 N5
[{1 71 T
324 / 3,/ 3, | 36, /
|4 ¥ [4 [
DRA:M Ctel DRAM Ctrl /O Ctrl I/O‘Ctr!
3 F 3 -~ b
‘L ‘L ‘L 2
Te} 7o)
DRAM
34)

FIG.4

U.S. Patent Oct. 20, 2015 Sheet 5 of 13 US 9,164,807 B2

Mem 44 PE Mem 52
Mem 45 40 Mem 53
Mem éﬁ PE Mem _5_4_
Mem 47 41 Mem 55
Mem 48 PE Mem 56
Mem 43 42 Mem 57
Mem 50 PE Mem 58
Mem 51 43 Mem 59
B Cluster Manager 60 L
Task Manager 62 PE Manager 64
N
Memory Manager 63 Com Manager 65
NoC

FIG.5

U.S. Patent

Oct. 20, 2015

Sheet 6 of 13

mam wws mmm mah WWm e

US 9,164,807 B2

I
I 81
Ly
ol
M |
.|
:I
b 1
; 83

US 9,164,807 B2

Sheet 7 of 13

Oct. 20, 2015

U.S. Patent

8Ol

8V
-

A

]

S1

il il | et Hay

0 R R D P
Fa N1 II—

=]

vi

91

!
L3
SO PRDY N 1 = 5

pusy
EWBN
fACE)
LWen
¥3d
£3d
Z3d

(=
1sbeuepy Aowey

Jabeuep yse |
Jsjjonuold Wvea
JON
ul viNQ

o vINg

US 9,164,807 B2

&

69l

puBiy
EWO
TALEH)

LIS

Sheet 8 of 13

¥3d
£€4d
¢3d

NP

PR VR U V) S

el

Oct. 20, 2015

U.S. Patent

t3d
1abeuepy Alowsy

1abeuep yse|
J9jj0UOD AVHQ
OON
ul ' yWa

o vNa

-E_ 4

US 9,164,807 B2

Sheet 9 of 13

Oct. 20, 2015

U.S. Patent

019l

A

el

Pusiy
cwepy
CUWd
LB

pad

€3d

¢3d

13d
seBeuep Aows|y

1ebeuep yse|
19jj0[UOY) NvVHQ
OON
ul YING

1IN0 YNNG

US 9,164,807 B2

Sheet 10 of 13

Oct. 20, 2015

U.S. Patent

AR

]

&

g Wiy

| AUS QL Zi=18ep 11

g woy

| o1

PL

i

| 9L

LE

AP0 g- L sy

1X201g-WeN
Y3d
€3d
¢3d

13d
1ebeueyy Aowapy

Jabeugp yse |
J8jj0nu0] NVHA
OON

ul VYN

no vWa

U.S. Patent Oct. 20, 2015 Sheet 11 of 13 US 9,164,807 B2

MPEG-2 stream

Variable 920
Length

Decoder

T1C1

91

Reorder
T2C1

: \
Quantization
T3C1

«©
3

Maotion
Vector

93 Decoder /
T4C1 4
inv DCT

T1ec2

o FIG.12

96

Luminance
motion
compensation

T3C3

compensation
+ Rescale

T3C2

compensation
+ Rescale

T4C2

Aggregate
& color space

T4C3

99

Outgoing video stream

U.S. Patent Oct. 20, 2015 Sheet 12 of 13 US 9,164,807 B2

MPEG-2 streamin

MacroB1
Reorder

Motion

Vb
VG

s ———

FIG.13

s e |

':I'BMAH T TTDMAI2 | | TDMAI3 |

T3

Luminance
Motion
Comp

.

Video stream out

US 9,164,807 B2

Sheet 13 of 13

Oct. 20, 2015

U.S. Patent

v old
.U«

S AR p——
2

JGNBISA - | . |

+

2{90|9- L taiy

piooig- L Wapy

il

- — — —— to— 7 o7t

JaBeuepy Aotiap
1ebeue wse |

utvyINd

-...En....wb---_--_-_,.- JE -
'
i
|
I
t
1
I
I
|
|
|
!
|
I
I
|
I
!
-

l3d

€ J01sn|D

OON

ejonpisno - £1 |

(o}
BO
—

[(gLi=01s}ejonbisno = TOVINQL |

" T Dooig- L We
: PooIg- L WS

i
"

] €dd

1abeuep Yse |

OON

ulving

: 1eBeuepy Atowsy

1
o |
S_ |

Pojg-L Wsiy

_ 1320|g- L Wepy

¥3d
1sBeuep Aloway

OON
ul vING

e ———

no vind

!

4
_
|
|
I
I
I
|

“ _ o YAIQ

_ [YlovindL]
-
_
|
|
|
|
I
I
_
J

n o
: £
m 1ebBeuey sse | m
' -
H -
m

US 9,164,807 B2

1
STATICALLY ALLOCATING SET OF TASKS
TO PARTICULAR CLUSTER AND
DYNAMICALLY ALLOCATING EACH TASK
TO DIFFERENT PROCESSING UNITS
WITHIN CLUSTER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is the U.S. National Phase application
under 35 U.S.C. §371 of International Application No. PCT/
EP2008/067345, filed Dec. 11, 2008, and claims the benefit
of French Patent Application No. 0708740, filed Dec. 14,
2007, all of which are incorporated by reference herein. The
International Application was published on Jun. 25, 2009 as
WO 2009/077429.

FIELD

The present invention relates to a system comprising a
plurality of processing units making it possible to execute
tasks in parallel in an efficient and effective manner. It applies
for example in all fields requiring intensive computations
with efficiency and consumption constraints related to
embedded systems.

BACKGROUND

The semi-conductor industry is facing a disconcerting cir-
cumstance: there are no longer any credible routes for signifi-
cantly increasing the performance of processors, at least not
at the individual level. Only systems using several processors
operating in parallel still seem to constitute an encouraging
route for increasing the computational power of systems.
Indeed, studies conducted in the 1960s have shown that the
ratio of computational power to efficiency of computational
systems is potentially much higher for parallel systems than
for sequential systems. The question can then arise of know-
ing why parallel systems did not become prevalent sooner,
especially in the field of embedded systems which are basi-
cally highly centered on optimization and efficiency. On the
one hand, the technology did not allow the integration of
massively parallel structures on one and the same component,
with the exception of SIMD (“Single Instruction, Multiple
Data”) structures which are easily programmable when the
application is tailored to this type of parallelism. On the other
hand, generally, parallel systems are much more difficult to
program and to develop. Such is the case notably for sym-
metric systems, also called homogeneous systems, based on
the replication of the same processing element and possessing
identical and homogeneous access and communication inter-
faces. Such is less the case, however, for asymmetric systems,
also called heterogeneous systems, which use several special-
ized processors for processing operations and particular inter-
faces. Asymmetric systems have been prevalent for a long
time, for example for conventional peripherals of the video or
network chip type, but they nevertheless remain limited as
regards the number of processors placed in parallel. It should
be noted that, generally, this prevalence has occurred in appli-
cation fields that are not very complex at the processing
control level, that is to say in which the heterogeneity of the
resources limits not only the complexity of the mapping of the
processing operations but also the flexibility of the mapping
of'the processing operations. However, specialized multipro-
cessing systems have also appeared in embedded systems. In
the field of mobile telephony, “multicores™ on a single chip
have appeared which can contain DSPs (“Digital Signal Pro-

10

15

20

25

30

35

40

45

50

55

60

2

cessors”) for signal processing, GPUs (“General Purpose
Processing Units”) for ordinary processing operations, as
well as analog input/ouput blocks. In the field of personal
stereos or multimedia players, decoding cores dedicated to
audio (“MPEG Audio Layer”, “Dolby D”, “DTS”) or to video
(“MPEG”, “H264”) have appeared in addition to the general-
purpose processor. Symmetric parallel systems are for their
part less developed, notably because of the difficulty in han-
dling the programming and because of the inextricability of
the fine tuning of the programs. Generally, these difficulties of
programming and fine tuning are exacerbated by the ever
increasing complexity of the applications. In embedded sys-
tems, these difficulties are also exacerbated by the desire to
integrate ever more functionalities and by the continual
increase in the volumes of data to be processed. For example,
mobile telephones associate telecommunication functions
with multimedia functions, positioning functions, or else
games. Mobile telephones use video sensors of ever greater
capacity and converters of ever higher throughput. Moreover,
intensive-computation tasks run alongside tasks dominated
by control, with very strong interactions between these vari-
ous elements of the applications.

The invention relates more particularly to the field of
embedded systems offering high computational power. New
applications in fields such as multimedia, communication, or
real-time processing systems demand ever more computa-
tional power for controlled surface areas and levels of power
consumed. As already explained previously, short of being
able to increase the processing powers of the computational
elements in an isolated manner, the only realistic solutionis to
multiply the computational elements and to operate them in
parallel. Within this framework, a new concept is currently
making its appearance, that of the parallel system on chip. In
theory, parallel systems on chip allow more efficient use to be
made of the additional transistors that can be integrated on
one and the same chip on account of advances in etching
techniques. Even within the fairly specialized framework of
processors for embedded systems, this trend to increase the
number of execution cores on one and the same chip is very
marked. In the medium term, this trend ought to mark the
introduction or indeed the making prevalent of systems with
several tens or indeed hundreds of execution elements.
Among these systems may be cited multiprocessor systems
on chip, usually designated by the acronym “MPSoC” stand-
ing for “Multi-Processor System on Chip”. MPSoCs are com-
plete systems which integrate as a minimum computational
elements able to operate in parallel and a complete commu-
nication architecture on chip. The communication architec-
ture of the current MPSoCs reproduces a connection system
architecture for a system composed of several macroscopic
elements. It can comprise communication buses, dedicated
networks on chip, usually designated by the acronym “NoC”
standing for “Network on Chip”, dedicated interconnection
switching systems, usually designated by the expression
“crossbars”, input/ouput interfaces, random access memory,
usually designated by the acronym “RAM”, local memories,
cache memories or “scratchpads”. But most of the time, the
communication architecture of an MPSoC comprises a com-
bination of all this. The essential problem of the mimicry of
communication architectures on chip in relation to macro-
scopic architectures is that macroscopic architectures are
envisaged for very regular processing operations, whether
these be massively parallel computational processing opera-
tions, stream processing operations or server tasks. Now,
applications on embedded systems are increasingly tending
toward much less regular and much less predictable process-
ing operations. The communication architecture of MPSoCs

US 9,164,807 B2

3

must therefore be rethought. Indeed, the implementation of
efficient parallel systems on chip with high-level perfor-
mance such as MPSoCs makes it necessary to operate tens or
indeed hundreds of computational cores or processing ele-
ments in unison. If this is not the case, then the use of paral-
lelism is not optimal. This implies that several tens or indeed
several hundreds of processing elements are not used cor-
rectly, that is to say they have a rate of use that is not fairly
high. Hereinafter, the processing elements will be designated
by the acronym “PE” standing for “Processing Flement”. But
to exploit parallelism in an optimal manner, the difficulties
are multifold. At the software level, a difficulty is that of
providing the programmer with simple and accessible tools
for expressing in code the whole of the potential parallelism
of'an application. Another difficulty at the software level is the
ability to derive the greatest benefit therefrom when compil-
ing this code. But these very complex software problems are
not the subject of this patent application.

To efficiently exploit a parallel architecture, it is necessary
to tackle the problem under the three-fold aspect of the con-
trol of the indeterminism, of the control of the communica-
tions and of the control of the checks. Indeed, once a potential
parallelism has been extracted from an application and
expressed in a program, it must still be possible to actually
implement this parallelism in a given hardware architecture.
In an MPSoC for example, in order to derive the greatest
benefit from the work of extracting the application parallel-
ism done by the programmer, numerous processing
sequences must be successfully distributed over all the
resources of the chip, these sequences being inter-related by
dependencies of data or of execution control. Hereinafter,
these sequences will be called execution tasks. An execution
task therefore relates to the execution of a processing opera-
tion on a PE. It is generally called a “thread” by software
specialists. By default in the remainder of the present patent
application, the term “task’ alone refers to an execution task.
Without any consideration pertaining on the one hand to the
way of choosing the PEs and on the other hand to the way of
operating them together, it is very improbable that the archi-
tecture can actually implement the whole of the parallelism
expressed in the program. In some sense, in the same way as
the program expresses the potential for parallelism of the
application, it is necessary to find a means of expressing the
potential for parallelism of the architecture through appropri-
ate control of the tasks. The consideration must take into
account all the situations which may be detrimental to good
use of the potential parallelism of the architecture. This
involves firstly the risks of being limited by the access to an
essential shared resource such as the central memory, a net-
work, a communication bus or a task manager. Italso involves
the risks of not being able to manage in a sufficiently precise
manner the interdependencies between the tasks, or of not
being able to manage them without tailoring to the particu-
larly dynamic character of certain applications. Finally, it
involves the risks of not being able to control the indetermin-
isms of the parallel execution, making it complex and tricky
to fine tune the programs. The consideration must culminate
in an execution model which defines the way of choosing the
PEs and the way of operating them together. Making several
tens or indeed several hundreds of PEs operate together in an
efficient manner within one and the same chip is currently one
of the major challenges which the microelectronic industry
has to meet. At the present time, techniques for programming
parallel applications are markedly more difficult to imple-
ment than techniques for programming sequential applica-
tions, both from the standpoint of the design and that of the
fine tuning of the programs. In order to progress the parallel

30

40

45

4

programming models toward better accessibility to the pro-
grammer, it is necessary for the execution model of the under-
lying parallel architecture to be properly tailored to this. This
must however be done without thereby sacrificing the effi-
ciency of implementation on current silicon technologies.
This is one of the technical challenges which the present
invention proposes to address.

For historical reasons, the exploitation of parallelism has
hitherto endeavored to propose solutions making it possible
to profit from parallelism at the application task level. Indeed,
despite intense research around the definition of architectures
capable of efficiently managing a high degree of parallelism
at the instruction level, these approaches have rapidly shown
their limits. At the same time, the complexity of embedded
systems makes it extremely difficult or inefficient to model
them in the form of a single control flow. Thus, users and
architecture designers concur in favoring parallelism at the
task level. Consequently, a strong trend currently observed in
the field of embedded systems is the integration on one and
the same silicon substrate of several processor cores allowing
the execution of tasks in parallel on one and the same circuit.
Several solutions have already been proposed for exploiting
the parallelism of such architectures on one and the same
silicon substrate. The best known models are the “SMT”
model according to the acronym standing for “Simultaneous
MultiThreading”, the “CMP” model according to the acro-
nym standing for “Chip MultiProcessing” and the “CMT”
model according to the acronym standing for “Chip Multi-
Threading”. Hereinafter, the processing units capable of man-
aging the execution of a set of instructions will be distin-
guished from the computational units capable only of
executing one instruction.

But the SMT, CMP and CMT models only partially address
the problem of embedded systems. They exhibit notably
numerous drawbacks. Indeed, as will be detailed subse-
quently, these models do not make any distinction between
the various processing classes that can coexist within an
application. Constructed on non-optimized computational
primitives, these systems are often unsuited to the applica-
tional requirements in regard to electrical consumption, cost/
performance ratio and operating dependability. These are
major drawbacks.

Solutions of CMP type lead to a distinction being made
between regular processing operations and irregular process-
ing operations. This involves solutions implemented on archi-
tectures which integrate computational units dedicated to
intensive processing operations, the irregular processing
operations being handled with the system software on a gen-
eral-purpose processor. But as will be detailed subsequently,
the use of system buses gives rise to lower reactivity of the
architecture and an inability of the system software to opti-
mize the use of the computational units.

To attempt to minimize these drawbacks, American patent
publication US2005/0149937A1, entitled “Accelerator for
multiprocessing system and method”, proposes that the
mechanisms for synchronization between the computational
units be handled by way of a dedicated structure. It does not
however afford any solutions to the problem of data transfer
between the tasks.

American patent publication US2004/0088519A1,
entitled “Hyperprocessor”, proposes for its part a solution to
the management of task parallelism in the context of high
performance processors. It does not however apply to embed-
ded systems, notably for determinism and cost reasons.

SUMMARY

One aspect of the invention is to alleviate the aforesaid
drawbacks. Since it is difficult to uniformly manage several

US 9,164,807 B2

5

hundred computational units in an individual manner, the
present invention rather proposes hierarchized management
of the tasks at two levels. The computational units being
grouped into blocks of several units, the present invention
proposes a mode of management of the tasks between the
blocks and a mode of management of the tasks inside each
block. Hereinafter, the blocks of computational units will be
called “clusters”. Within a given cluster, a very dynamic
execution model allows local optimization of the use of the
computational units, so that the processing of one and the
same set of tasks in the cluster can vary from one execution to
another. Between clusters, a more static execution model
allows the allocation of tasks to a given cluster during com-
pilation and during link editing, so that one and the same set
of tasks is always processed by the same cluster from one
execution to another. The communication tasks which ensure
the routing of the information are also managed in a static
manner during compilation and during link editing. In the
case where the application of the two-level execution model
according to the present invention leads to the situation
whereby a task assigned to a given cluster has formally to use
data generated by a remote cluster, the execution of said task
is done on the same model as if it used only data of the local
cluster. This is possible by virtue of communication tasks of
“DMA” type according to the expression standing for “Direct
Memory Access”, which signal the availability or the trans-
mission of the data from or to off-cluster destinations and
handle the data transfer.

For this purpose, the subject of the invention is a system
comprising a plurality of processing units allowing to execute
tasks in parallel and a communication network. The process-
ing units are organized into a plurality of clusters of units,
each cluster comprising a local memory. The system com-
prises means for statically allocating tasks to each cluster of
units, so that a given task of an application is processed by the
same cluster of units from one execution to another of said
application. Each cluster of units comprises cluster manage-
ment means for dynamically allocating tasks to each of its
processing units as well as some space in the local memory
for executing them, so that a given task of an application may
not be processed by the same processing unit from one execu-
tion to another of said application. The cluster management
means comprise means for managing the tasks, means for
managing the processing units, means for managing the local
memory and means for managing the communications
involving its processing units, these management means
operating simultaneously and cooperatively.

Advantageously, the local memory that each cluster com-
prises can be dedicated to said cluster.

In one embodiment, the clusters of processing units can be
disposed on a chip, the clusters of units communicating with
one another by way of a network on chip. The system can also
comprise a central memory.

The system can comprise means for compiling and editing
links for statically allocating tasks to each cluster of units.

Advantageously, when a task allocated to a cluster of units
has to consume data produced in another cluster of units, a
data send task can be executed in the cluster where the data are
produced, said send task being able to transmit the data to a
data receive task executed in the cluster where the data are
consumed, so that the task consuming the data can be
executed on the same mode of dynamic allocation of the
resources as if said task consumed only locally produced data.
A memory space dedicated to the communication between
the send task and the receive task can then be reserved in the
local memory of one of the two clusters involved. Advanta-
geously, the send task can be temporarily interrupted so as not

35

40

45

55

6

to saturate the memory space dedicated to the communication
between the send task and the receive task. The throughput of
the send task can also be determined during compilation, so as
to allocate to the receive task sufficient space in the local
memory so that this space cannot be saturated.

For example, the data send and receive tasks can be allo-
cated statically to the cluster where the data are produced and
to the cluster where the data are consumed respectively. In
one embodiment, the send and receive tasks can be executed
by dedicated execution means exchanging data directly with
the local memory of the cluster.

For example, the cluster where the data are consumed can
dispatch a credit to the cluster producing the data as a function
of'the memory space still available, the cluster producing the
data being able to adjust the data send throughput as a func-
tion of the credit received. When the memory space dedicated
to the communication between the send task and the receive
task is used beyond a given quota, the cluster management
means for the cluster managing the receive task can also
dispatch an interrupt signal to the cluster management means
for the cluster managing the send task, and then can dispatch
a resume signal when the memory space is used below the
quota.

In one embodiment, the means for managing the local
memory can allocate spaces in the local memory with a fixed
granularity level, so as not to fragment the addressing space
formed by the local memory. In another embodiment, the
means for managing the local memory can allocate spaces in
the local memory with a variable granularity level.

In one embodiment, the means for managing the local
memory can free the spaces in the local memory through the
use of a counter indicating the number of tasks that may have
to consume the data of these spaces. As soon as a task no
longer needs to access a data item, the value of the counter is
modified. Thus the value of the counter makes it possible to be
able to identify whether any consuming tasks still remain. If
this is not the case the memory space can then be freed.

In one embodiment, the means for managing the local
memory can free the spaces in the local memory through the
use of a list of the tasks that may consume the data of these
spaces. The means for managing the local memory then await
an information item according to which none of the tasks of
the list needs the data item any longer in order to free the
associated memory space.

For example, the means for managing the tasks can com-
prise a module for selecting the tasks for determining the
allocatable tasks fulfilling execution prerequisites and a
scheduling module for assigning the allocatable tasks to the
processing units. Advantageously, the module for selecting
the tasks can determine the allocatable tasks fulfilling the
execution prerequisites at one and the same time in a mode of
execution of parallel multitask type and in a mode of execu-
tion of data flow type. The execution prerequisites can com-
prise precedencies of processing operations and/or availabili-
ties of data and/or availabilities of memory spaces for storing
the data produced and/or events that are local or external to
the cluster.

Advantageously, the send task can allow to transmit data to
several clusters of units simultaneously, so as to simulta-
neously supply several consuming tasks with the same data.
Several send tasks can also be executed simultaneously in one
and the same cluster of units, so as to simultaneously supply
several consuming tasks with different data.

In one embodiment, the system can comprise means dedi-
cated to the management of send and receive tasks of DMA

US 9,164,807 B2

7

type, so as not to overload the means for managing the tasks.
The system can also comprise at least one inputs/outputs
interface.

The system can for example allow to execute a morphing
application by executing tasks in parallel on its processing
units. It can also allow to execute an application implement-
ing a Hough transform by executing tasks in parallel on its
processing units. It can also allow to execute an MPEG
decoding application by executing tasks in pipeline mode.

For example, the spaces in the local memory can be freed
by using a counter of the number of tasks that have consumed
the data of these spaces or by using a list of the tasks that have
consumed the data of these spaces.

Embodiments ofthe invention have advantages of allowing
parallel and concurrent execution of tasks on a platform com-
prising a plurality of PEs, in modes of execution of both
control type and also data flow type, or which mixes the two
modes. Thus, embodiments of the invention can be used
within the framework of embedded systems.

BRIEF DESCRIPTION OF THE DRAWINGS

Other characteristics and advantages of the invention will
become apparent with the aid of the description which fol-
lows offered in relation to appended drawings which repre-
sent:

FIG. 1, through a chart, a generic model of SMT architec-
ture and an operating example;

FIG. 2, through a chart, a generic model of CMP architec-
ture and an operating example;

FIG. 3, through a chart, a generic model of CMT architec-
ture and an operating example;

FIG. 4, through a diagram, an exemplary architecture com-
prising several clusters according to the invention;

FIG. 5, through a diagram, an exemplary architecture of a
cluster according to the invention and its operating principle;

FIG. 6, through a chart, the tasks for implementing accord-
ing to the invention a “morphing” application;

FIG. 7, through a diagram, a prediction and a block trans-
formation in a “morphing” application according to the
invention;

FIG. 8, through a timechart, the tasks executed on a cluster
during a “morphing” application according to the invention;

FIG. 9, through a timechart, the exchanges occurring when
updating translation tables during a “morphing” application
according to the invention;

FIG. 10, through a timechart, the exchanges occurring
upon a break in the input flow for a task during a “morphing”
application according to the invention;

FIG. 11, through a timechart, a communication during a
“morphing” application according to the invention;

FIG. 12, through a chart, a flow of data in an MPEG-2
decoding application according to the invention;

FIG. 13, through a chart, tasks mapped and routed during
an MPEG-2 decoding application according to the invention;

FIG. 14, through a timechart, the management of the com-
munications during an MPEG-2 decoding application
according to the invention.

DETAILED DESCRIPTION

The implementation of a large processing capacity is an
emerging need of applications atthe embedded systems level.
Ever more high level decision taking needs to be based on low
and medium level information processing tasks. A conven-
tional example could be the detection of road signs for aiding
the driving of vehicles. For such an application, low level

10

15

20

25

30

35

40

45

50

55

60

65

8

processing operations must first of all normalize the bright-
ness and the contrast of the image, and then carry out extrac-
tion of contours with a Sobel filtering for example. This is
followed by medium level processing operations such as
Hough transforms or recognitions of basic shapes. Finally,
complex shape recognition or correlation processing opera-
tions, in conjunction with databases stored in memory, are
applied at the highest levels. These high level processing
operations can potentially be coupled with low level interme-
diate phases, such as for example a parallax correction. Vice
versa, computationally intense low level processing opera-
tions can be directed by external data or data arising from
previous processing operations. Such is notably the case for
the latest generation video compression algorithms. As
already indicated previously, a strong trend currently
observed in the field of embedded systems is the integration
on one and the same silicon substrate of several PEs allowing
the execution of all these processing operations in parallel on
one and the same circuit, notably by virtue of SMT, CMP or
CMT models.

FIG. 1 illustrates through a chart a generic SMT model
according to the prior art, as well as an operating example of
this model. The chart at the top of the figure illustrates a piece
of system software 1, or “OS” according to the expression
standing for “Operating system”, which supplies processing
operations to a single control resource 2, or “Task Dis-
patcher” as it is known in the art. The control resource 2
redistributes the processing operations to n computational
units FU1 to FUn, according to the acronym “FU” standing
for “Functional Unit”, only the units FU1, FU2, FU3 and FUn
being illustrated by FIG. 1. At each cycle, the control resource
2 concurrently assigns instructions to the units FU1 to FUn
according to the availability of the data coming from a central
memory 3 shared by the units and according to possible
random vagaries of operation. In the diagram at the bottom of
FIG. 1, each square represents an instruction. A row of
squares represents from left to right the instructions executed
in chronological order by a unit. From top to bottom, the rows
of squares represent the instructions executed by the units
FU1, FU2, FU3 and FUn respectively. A task consists of a
series of instructions represented by squares of the same
texture. The black dashes between the instructions represent
instruction assignment and control tasks. The crossed-out
squares correspond to time intervals not used by the units,
because of dependencies of data or resources for example.
This first solution is for example implemented in the latest
generations of “Intel” (trademark), “IBM” (trademark) or
“HP Alpha” (trademark) processors. It consists in using sev-
eral program counters, so as to feed the computational units
with instructions arising from several flows of instructions.
The dependencies between tasks being limited, the parallel-
ism at the instruction level seen by the processor, or “ILP”
according to the instruction standing for “Instruction Level
Parallelism”, is increased, as consequently is the performance
of the processor. The implementation of these solutions is a
tricky exercise, the complexity of the stages of reading and
distributing the instructions being very high. Consequently,
these architectures lead to very big circuits expending more
than 100 watts per component, this being incompatible with
the constraints of embedded systems.

FIG. 2 illustrates through a chart a generic CMP model
according to the prior art, as well as an operating example of
this model. This solution is generally favored in embedded
systems because of its relative simplicity of implementation.
The chart at the top of the figure illustrates a piece of system
software 10 which supplies processing operations to a single
control resource 11. The control resource 11 redistributes the

US 9,164,807 B2

9

processing operations to the n computational units FU1 to
FUn, only the units FU1, FU2, FU3 and FUn being illustrated
by FIG. 2. The control resource 11 is charged with determin-
ing the tasks that are ready to be executed. As soon as a unit
from among FU1 to FUn is freed, it is assigned a task which
is processed as soon as the loading of the data from a central
memory 12 ends. In the diagram at the bottom of FIG. 2, each
square represents an instruction. A row of squares represents
from left to right the instructions executed in chronological
order by a unit. From top to bottom, the rows of squares
represent the instructions executed by the units FU1, FU2,
FU3 and FUn respectively. A task consists of a series of
instructions represented by squares of the same texture. The
black dashes between the instructions represent instruction
assignment and control tasks. The loading of the data is rep-
resented by crossed-out areas. The principle of this solution is
to concurrently distribute tasks to the units in accordance with
their availability, and no longer instructions. Each unit then
executes the tasks which are assigned to it, one after another
and until their terminations. These architectures are split into
two families: symmetric structures and asymmetric struc-
tures. The asymmetric structures integrate heterogeneous
computational units FU1 to FUn optimized for a given appli-
cation field, the distributing of the tasks over these resources
being previously identified at the time of compilation. The
software partitioning carried out during compilation thus
makes it possible to simplify the mechanisms of dynamic
distribution of tasks at the time of execution. Included among
these so-called “application driven” solutions are notably the
platforms from “OMAP” (trademark), “VIPER” (trade-
mark), “PNX” (trademark) or “Nomadik™ (trademark). For
their part, symmetric structures are based on the integration of
identical computational units FU1 to FUn. The units FU1 to
FUn can be general-purpose, as in the Cells platform from
IBM or MPCore platform from “ARM” (trademark), or opti-
mized for a given application field, like the CT3400 from
Craddle Technologies, optimized for MPEG4-AVC coding/
decoding. Symmetric solutions make it possible to target very
wide ranges of problems, whereas asymmetric solutions are
optimized for a well identified application field.

FIG. 3 illustrates through a chart a generic CMT model
according to the prior art, as well as an operating example of
this model. The chart at the top of the figure illustrates a piece
of system software 20 which supplies with processing opera-
tions a single control resource 21. The control resource 21
redistributes the processing operations to the n computational
units FU1 to FUn, only the units FU1, FU2, FU3 and FUn
beingillustrated by FIG. 3. The control resource 21 is charged
with determining the tasks that are ready to be executed. As
soon as a computational unit FU1 to FUn is freed, it is
assigned a task, which is processed as soon as the loading of
the data has been carried out. In the diagram at the bottom of
FIG. 3, each square represents an instruction. A row of
squares represents from left to right the instructions executed
in chronological order by a unit. From top to bottom, the rows
of squares represent the instructions executed by the units
FU1, FU2, FU3 and FUn respectively. A task consists of a
series of instructions represented by squares of the same
texture. The black dashes between the instructions represent
instruction assignment and control tasks. The loading of the
data is represented by crossed-out areas. Each unit can man-
age several tasks concurrently. As soon as a task is disabled,
for example because of a cache memory defect, the unit
replaces it with a new one. In this case, the task switching
within the unit does not result in any context loading penal-
ties. This solution associates the previous two models SMT
and CMP. Here, this involves extending the concept of CMP

10

15

20

25

30

35

40

45

50

55

60

65

10

s0 as to permit the execution of several tasks on the units. For
the moment it is envisaged only within the framework of
solutions of server type. In particular, the future generations
of servers from “SUN” (trademark) will exploit this technol-
ogy, first of all with the UltraSparc IV and then with the
Niagara processor.

As already stated previously, the SMT, CMP and CMT
models illustrated by FIGS. 1, 2 and 3 only partially address
the problem of embedded systems. Indeed, these models do
not make any distinction between the various processing
classes able to coexist within an application. Thus, processing
operations that are strongly dominated by control are pro-
cessed in an equivalent manner, that is to say on one and the
same PE, as the processing operations that are regular and
critical from the point of view of the execution time thereof.
The computational units having to support the regular pro-
cessing operations as well as the very irregular processing
operations, this results in systems constructed on non-opti-
mized computational primitives. Thus, the systems con-
structed on these prior art models are often unsuited to the
applicational requirements in regard to electrical consump-
tion, cost/performance ratio and operating dependability. It is
however necessary to mention a few existing solutions of
CMP type which lead to a distinction being made between
regular processing operations and irregular processing opera-
tions. These involve solutions implemented on architectures
which integrate computational units dedicated to intensive
processing operations. The irregular processing operations
are handled with the system software on a general-purpose
processor. But though the integration of computational units
dedicated to intensive processing operations permits optimi-
zations allowing appreciable improvements to the perfor-
mance or energy efficiency of these architectures, the ineffi-
ciency of the communications between the elements of the
architecture unfortunately causes all the benefit of these opti-
mizations to be lost. Indeed, the processing tasks must com-
municate with one another, they must also communicate with
the system software and the control processing operations. In
these systems, the communications are done by way of sys-
tem buses, entailing large penalties both at the latency level
and the bandwidth level. Thus, these systems are penalized by
the latency accompanying the transmission of control infor-
mation and by the throughput disturbing the data transfers.
This results in a lower reactivity of the architecture and in an
inability of the system software to optimize the use of the
computational units. It is clearly apparent that the prior art
does not provide any solution which addresses the problem of
embedded systems as a whole. Notably, the aspects related to
the high density of computational elements, which poses
problems of access to the data, and to the indeterminism of
execution, especially during access to shared resources.

Indeed, a data access problem arises when there is a very
high density of computational units. If a great many units are
present, this implies that at each instant, a great many data are
necessary to supply all these units in such a way that the
potential parallelism is actually implemented. However,
access to the external DRAM is necessarily limited, most
often by way of a single exchange bus. Consequently, it is
impossible for all the computational units to be supplied on
the basis of this DRAM, knowing that one exchange bus is
rarely even sufficient to correctly supply a single computa-
tional unit. This is due to the differences in performance
between the dynamic memories and the computational units,
which had moreover given rise to the introduction of cache
memories for processors right from the 1980s. This is the
reason why it is unthinkable not to have any memory on chip
on these highly parallel architectures. Access to the external

US 9,164,807 B2

11

memory being a limiting factor, it is necessary to be capable,
during processing, of exploiting the data already present on
the memory of the chip. These data originate either from the
external memory, so they have been repatriated beforehand
by a different processing, or they have been produced locally
by a processing so as to supply new processing operations.
This implies that strong pressure is applied to the communi-
cation interfaces in order to supply all these PEs. Stated
otherwise, with a centralized memory on chip the bottleneck
is situated at the level of the access to this centralized
memory. With a distributed memory, the bottleneck is situ-
ated at the level of the communication interface. An interface
capable of maintaining a high connectivity in respect of the
communications between computational units is therefore
necessary. There is therefore an antagonism between the con-
nectivity of the communication which is a possible bottleneck
of the parallelism if it is insufficient and a high risk of dras-
tically reducing the silicon efficiency and energy efficiency if
the communication interfaces are overdimensioned. Finally,
the control of so many PEs also constitutes a problem. Since,
if the control is centralized for all the units, the single control
module constitutes a single point of synchronization, which
has every chance of being a limiting factor in the exploitation
of parallelism during execution. On the other hand, the inde-
pendent control of several tens or hundreds of PEs by them-
selves is at the least tricky. Indeed, a relevant decision that has
to be taken in regard to the scheduling of the tasks requires a
knowledge of the states of the upstream processing opera-
tions. These processing operations executing on potentially
distant PEs, this constitutes yet an additional load for the
communication system. Thus, except for very regular pro-
cessing operations with static scheduling such as the process-
ing of data streams, this architecture with no execution con-
trol is not efficient. Moreover such an architecture would
make it difficult to fine tune the programs on account of its
non-deterministic behavior. To summarize, neither a com-
pletely distributed architecture, nor a highly unified architec-
ture make it possible to obtain performance and efficiencies
that are satisfactory at the execution level, except for an
application which would be either trivially parallel or strictly
data flow. As soon as an application needs control at any level,
then it is necessary to envisage finding an intermediate equi-
librium between these two extremes. But this also involves
finding an equilibrium between static control and dynamic
control.

Moreover, a major problem of parallel programming is the
control of the indeterminisms, in particular in accesses to
common resources such as storage or communication. The
multiplicity of possible behaviors when random vagaries of
execution and latencies are taken into account is much more
complex than those which govern a sequential program. In
practice this makes it potentially very difficult or indeed
impossible to fine tune and consequently to program such
systems. The risks are multifold: concurrences of access,
inter-lockups, diverse inconsistencies. In a general parallel
system it is in practice impossible to properly define an
observable state of the system and consequently to know the
reasons why an output behavior has been observed at a given
instant. Even by playing back the same data in the same order
and with comparable synchronizations, the same output
behavior may not be observed because of the various random
vagaries of the system. The absolute control of everything
that happens in the system at each instant is of course not the
sought-after response, since this would run the risk of greatly
reducing the performance of the system by imposing, for
example, a certain number of strong synchronizations
between various elements. In fact the objective that must be

10

15

20

25

30

35

40

45

50

55

60

65

12

sought is to obtain execution which is reasonably independent
of the random vagaries of execution. This is indeed what is
meant when one speaks of execution determinism. Since the
risks in relation to an execution with uncontrolled indeter-
minism are numerous. Firstly, the lack of control of the com-
munications gives rise to poor feeding of the input data, this
being detrimental to parallelism. The lack of control of the
communications is also detrimental to the control of the
arrival of the data. If the communications are no longer deter-
ministic, there is no longer any means of verifying that a
particular data item reaches its destination when the commu-
nication network is highly loaded or when inter-lockups exist.
The absence of data location due to the absence of determin-
ism of the communication times does not make it possible to
define a global state of the system, except for simplistic appli-
cations of the pure data flow type. It is then impossible to do
fine tuning and execution control. Thereafter, the lack of
control of execution gives rise to problems due to conflicts of
access to the shared resources and problems due to poor
account being taken of the chaining together of the processing
operations. Without a control of execution, it is not possible to
ascertain the behavior of a faulty program. Execution faults
detected too late give rise to a phenomenon of propagation
along the parallel execution chain, thereby making it increas-
ingly difficult to determine the original cause. Finally, the
determinism of execution makes it possible to control what
happens in the execution of a given application on the chip. It
makes it possible to envisage means for fine tuning programs
and for tracing errors, these means making it possible to
highlight errors right from the design of the applications.
Such means render the hard points of parallel programming
more accessible. This is one of the objectives of the present
invention.

FIG. 4 illustrates an exemplary general architecture
according to the invention. In this example, 16 clusters CI0 to
CI15 are disposed on a chip 30. Each cluster among Cl0 to
CI15 encompasses a certain number of computational units.
These units are not represented in FIG. 4. They will be illus-
trated in greater detail in FIG. 5. The clusters Cl0 to CI15 can
communicate with one another by way of a communication
structure disposed on the chip 30. For example, the commu-
nication structure can be a network on chip 31 or “NoC” to
use the acronym. But extremely varied communication struc-
tures can be used, such as a bus, hierarchical buses or point-
to-point structures. Hereinafter in the present patent applica-
tion the use of the NoC 31 is the preferential solution only for
reasons of performance and ease of illustration. Each cluster
of Cl10 to CI15 has an interface with the NoC denoted N0 to
N15 respectively. Moreover, an architecture with beneficial
topological properties can make it possible to greatly simplify
the efficiency of the heuristics for mapping the tasks and for
routing the communications. Indeed, mapping-routing con-
stitutes a very complex problem in distributed systems. It can
be NP-complete. Fortunately, there exist known heuristics
providing approximate solutions. Of diverse complexities,
these heuristics are however very sensitive to the topology of
the support. Thus, in a preferential manner, a topology of toric
type is adopted in the present example. But any other topol-
ogy could be used without calling into question the invention
described in the present patent application. It is then only a
matter of finding a good compromise between the complexity
of'the network and that of the mapping-routing. For example,
controllers 32 and 33 allowing access to an external central
memory 34 of DRAM type and input/ouput controllers 35
and 36 break a priori the regularity of the torus. But as long as
the clusters CI0 to C115 are mutually identical, the mapping-
routing problem can be considered independently of the

US 9,164,807 B2

13

accesses to the memory and inputs/outputs. Thus a first step
can allow the mapping of the processing operations and the
routing of the communications between the clusters. A sec-
ond step can make it possible to optimize these accesses a
posteriori, by exploiting the translation-invariance properties
of a toric architecture.

FIG. 5 illustrates an exemplary internal architecture of a
cluster from among C10 to CI15, for example the cluster C10.
The cluster C10 comprises for example four programmable
PEs 40, 41, 42 and 43. For example, the units 40, 41, 42 and
43 can be processors, “Digital Signal Processors” or “DSPs”,
or else reconfigurable elements. The cluster C10 comprises
for example 16 memory banks 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58 and 59. The set of these banks
constitutes in this example the local memory of the cluster,
this local memory being able advantageously to be physically
dedicated to the cluster. A module 60 for managing the cluster
C10 makes it possible, among other things, to configure an
interconnection resource internal to the cluster C10, so as to
connect the memory banks 44 to 59 with the units 40, 41, 42
and 43 according to requirements. The interconnection
resource is not represented in FIG. 5. Hereinafter the module
60 will be called the cluster manager. For example, a pro-
grammable DMA interface 61 is linked with the local node of
the Noc 31. The DMA interface 61 makes it possible to
advantageously transfer data between the memory local to the
cluster C10 and the interface N0 of the cluster C10 to the Noc
31.

The cluster manager 60 is itself composed of several sub-
modules operating simultaneously and cooperatively.
According to the technological and cost constraints, these
sub-modules can be produced at various levels of entangle-
ment between hardware modules and software modules.

For example, the cluster manager 60 comprises a task
management module 62 or task manager. The implementa-
tion to be preferred ought to be a programmable or reconfig-
urable solution relying on specific hardware resources, for
example sorting structures or associative-storage structures.
This makes it possible to optimize performance while having
the necessary flexibility for tailoring the structure to the appli-
cational constraints, in a similar manner to schedulers whose
performance depends a great deal on the field of use.

For example, the cluster manager 60 also comprises a
module 63 for managing the memory or memory manager, a
module 64 for managing the units or PE manager, a module
65 for managing the network and communications or net-
work/communication manager. The preferential implemen-
tation of these managers can be predominantly hardware-
based so as to maximize performance. In all cases, the
modules 62, 63, 64 and 65 can be invoked simultaneously. But
it should be clearly understood that the splitting into sub-
modules of the cluster manager 60 presented here does not
presage any hardware or software structure supporting the
functionalities of these sub-modules. Thus it is possible to
hierarchize the functionalities so that they are brought close to
the resources that they must manage, thus avoiding the for-
mation of bottlenecks. Such an example will be detailed sub-
sequently for efficient management of the data flow mode.

Upon initialization of the cluster Cl0 or during a forced
reload, the task manager 62 and the network/communication
manager 65 receive description tables containing the infor-
mation which they need in order to operate. This initialization
procedure can for example be managed by an external master
distributing the initialization sequences by way of the internal
network or by an internal procedure initializing each of the
clusters Cl10 to CI15 in sequence. On account of the frequent
access to these tables by the managers 62 and 65, it is highly

20

40

45

55

14

preferable that said tables be stored in internal particular
memory spaces and not on the memory banks 44 to 59 of the
cluster C10.

The managers 62, 63, 64 and 65 can receive various events
originating from the cluster C10, such as events regarding the
production or consumption of data on the part of the tasks
executing on the units 40 to 43 or task termination events. In
order to efficiently manage the memory resources, these man-
agers can also receive events related to an overflow or to arisk
of overflow of the allocated memory spaces. Likewise, these
managers can request the dispatching of data which are in
memory. This list of events is not exhaustive and any type of
event potentially relevant for the execution and control of an
application can be made available to these managers accord-
ing to the applicational requirements.

A software task is the result of the splitting by the program-
mer of an application into processing operations on the basis
of purely software considerations, for example taking
account of the data dependencies. A software task does not
result from any hardware consideration. By contrast, an
execution task is related to the particular features of the hard-
ware architecture and of the mapping-routing, as well as a
multitude of other factors such as the scheduling of or the
ability to interrupt processing operations. In the cluster C10 of
FIG. 5, the task manager 62 is charged with managing the
execution of the execution tasks on the units 40, 41,42 and 43.
For example, it can itself be composed of a module for select-
ing the tasks and of a scheduler, these two elements not being
represented in the figure. For example, minimum prerequi-
sites for launching the execution of a task can be provided in
tables to the module for selecting the tasks upon system
initialization. These may involve events that are local or exter-
nal to the cluster. These prerequisites may then comprise not
only precedencies between the tasks, but also availabilities of
a minimum of data necessary for the start of the task or of
memory spaces to store the data produced. Whether this be in
a parallel multitask type mode of execution or in a data flow
type mode of execution, when a given task is on standby and
satisfies the minimum prerequisites, it is presumed to be
allocatable by the module for selecting the tasks. The sched-
uler then chooses from among the allocatable tasks those
which are elected to be executed on the PEs 40, 41, 42 and 43.
It should be noted that the scheduling policy is highly depen-
dent on the applications. For example, the scheduling policy
for genuine real-time systems is radically different from the
scheduling policy for “best effort” systems, as they are known
in the art. Consequently, the scheduling policy is either pro-
grammable or reconfigurable according to the type of appli-
cations aimed at.

Moreover, if the minimum prerequisites are fulfilled, this
implies that the task can be allocated to one of the units 40, 41,
42 or 43, that is to say it can begin to execute. But this does not
necessarily imply that all the data are available. Thus, it is not
certain that the execution of a task can be brought to its
termination without internal synchronization phases which
may be related to the availability of the data or of memory
space. As detailed subsequently, these synchronizations inter-
nal to a task may be managed locally by the PE 40, 41, 42 or
43, or else may involve the task manager 62.

When a task is allocated to one of the units 40, 41, 42 or 43,
the cluster manager 60 forwards the selected unit the param-
eters which it needs in order to initialize itself, which may be,
for example, the current context if the task had been switched
or inputs for its local address translation table. These tables,
whose manner of operation will be detailed hereinafter in the
patent application, allow the link to be made between the data
such as arises from the programming and their physical

US 9,164,807 B2

15

addresses, available only during the execution of the task
locally on a cluster. This table allows a task to access the data
that it has to manipulate. The task operates in the most trans-
parent possible manner in relation to the unit where it
executes and to its upgrades, if any. The task can dispatch
signals to the cluster manager 60 to indicate that it has fin-
ished a processing operation on data, whether this be by
production or by consumption. The associated memory is
either free for reallocation to another task, or the data that it
contains may be useful as input to another task. If a task
makes an invalid access to the memory which is provided to
it by way of the memory allocation tables, this may stem from
two situations. First of all, the task considered may be at fault
and have to be stopped. Or else, the task may have started up
although it did not yet have all the necessary data for input or
all the necessary memory space for output. It should be noted
that the latter situation also corresponds to the case of data
flow type processing, which needs to be supplied with data
continually, but whose efficient supply depends on the tempo
of the input stream provided by previous processing opera-
tions. The memory space allocated to a task not being infinite,
it may also happen that there is no longer the necessary room
required to store the data produced, although the input stream
is still available. These cases are not errors, but they may lead
the task manager 62 to switch the processing if it has another
task to be allocated on one of the units 40, 41, 42 or 43. This
may depend on the number of processing operations and the
chosen scheduling policy. If the data or the memory required
for the execution of the processing operation become avail-
able, the cluster manager 60 can also transmit an update of the
unit’s address translation tables, so that said unit can continue
the task in progress. The detection of errors during memory
accesses is paramount in order to have secure operation and to
allow efficient fine tuning of the applications. When reading,
these errors represent access to a data item which is never
available, as it was not produced. When writing, these errors
represent access to a data item which exceeds the memory
space allocatable to this task. The distinction between the
case of a fault and the case of normal operation must be made
by analyzing invalid accesses. An access range leading to the
normal operating case and a second range leading to an erro-
neous case are defined off-line. It is also possible to use a
“watch-dog”, as it is known in the art, which makes it possible
to identify tasks on standby awaiting data or memory space,
whose behavior is abnormal in relation to the temporal behav-
ior in the worst case. These tasks are then considered to be at
fault. It is also possible to identify whether a task should
exploit the data flow mode. In certain cases it will then be
possible to detect an error rapidly, it not being possible for a
non-data flow task to be on standby awaiting data.

In the exemplary embodiment of FIG. 4, the clusters C10 to
CI15 and the controllers 32 and 33 advantageously have
execution means dedicated to the communication tasks, such
as at least one DMA engine. The DMA engines can advanta-
geously exchange data directly with the memory local to the
cluster. These DMA engines can advantageously be used to
execute communication tasks making it possible to exchange
data among the clusters C10 to C115. This is why the commu-
nication tasks will subsequently be called “DMA tasks™ here-
inafter in the patent application. For example, a send task can
be executed in the cluster where the data are produced and a
receive task can be executed in the cluster where the data are
consumed. Advantageously, these send and receive tasks can
be allocated statically to the clusters in the same manner as the
other tasks. In the present invention, the DMA engines are
simply considered to be particular PEs. The DMA tasks are
managed in the same manner as a processing task but require

5

10

20

25

30

40

45

50

55

60

65

16

that the management means are constrained to use resources
of DMA type to execute them. In normal operation, a DMA
engine charged with the reception of data must have available
a space in the memories 44 to 59 tailored to the quantities of
data provided at reception. If data arrive although there is no
longer any memory available, then this involves a major error
that must be signaled to the cluster manager 60. To attempt to
avoid this, a mechanism allows the cluster Cl0 in reception
mode as illustrated by FIG. 5 to signal to a send cluster the
problem of saturated communication link. In the example of
FIG. 5, if the memory manager 63 does not succeed in assign-
ing additional memory to the relevant communication link,
then an interrupt signal can advantageously be dispatched to
the send cluster. A second signal can be dispatched to it as
soon as sufficient memory is available to perform the alloca-
tion. This mechanism makes it possible to be certain of the
most transparent possible cooperation when the send streams
from one cluster to another must be directed by the consumer.

When a data load has terminated, whether upgoing or
downgoing, the corresponding DMA engine dispatches a sig-
nal to the cluster manager 60 to indicate this to it. This end of
loading may occur in such a way that prerequisites regarding
local allocation of tasks are then fulfilled. Thus, from the
point of view of the data receive cluster C10, the inter-cluster
communication mechanism is equivalent to the local produc-
tion of data by one of the units 40, 41, 42 or 43. From the point
of view of the cluster Cl0, this involves waiting for a task
termination: either a task of producing data executed by one
of'the units 40, 41, 42 or 43 terminates, or a task of receiving
data by a DMA engine terminates. This makes it possible to
avoid differentiating an execution model for the processing
operations manipulating local data and an execution model
for the processing operations which use remote data. It is very
important to be able to show that such a unit of the intra- and
inter-cluster execution model actually exists. Indeed, it is this
unit which makes it possible to envisage simplified genera-
tion of the codes, since it is unified. Consequently, a DMA
task is managed in the same manner as an ordinary task by the
task manager 62. It must however be further constrained by
the external data flowing around the network of the chip.
Notably, a DMA task must be a program generated specifi-
cally for the chosen communication channels, the allotted
bandwidths and the arrangement of the data to be processed.
According to the applicational requirements, the program of
a DMA task can also be parametrized to ascertain all the
information influencing the communication, which informa-
tion cannot be predicted off-line. By way of example, a func-
tion of object tracking in an image requires the manipulation
of image sub-parts whose size and position is obtained only
after a low-level processing.

The memory manager 63 is charged with allotting the data
contained in the memory banks 44, 45, 46, 47, 48, 49, 50, 51,
52,53,54,55,56,57,58 and 59 to the various execution tasks
in the cluster C10. The memory manager 63 must operate in
conjunction with the units 40, 41, 42 and 43 on which the
tasks execute. For this purpose, it receives various events,
either directly from the PEs which execute tasks, or by way of
the task manager 62. This makes it possible to manage the
access rights and the memory quotas of the tasks. In addition
to the allotting of a memory space to each of the tasks
executed on the units 40, 41, 42 and 43, the memory manager
63 also plays an important role during inter-cluster commu-
nications by managing the memory space associated with
each communication channel. For example, the memory
manager 63 can advantageously manage a quota, which is a
memory size allocatable to a task for a data item. This quota
has a direct application in respect of the processing operations

US 9,164,807 B2

17

for data flows, but its usefulness is not limited to this. Indeed,
the exceeding of the quota may generate an event toward the
task manager 62, which may make it possible to interrupt the
generation of the data by communicating if appropriate with
the task manager of the cluster where said data item is pro-
duced. A second event may be generated by the consumption
processes when the data item passes back below its quota, and
this may allow the resumption of the producer task. The term
“quota” does not prejudge the room which is actually taken up
by the data item, since the latency between the generation of
the event and the suspension of the producer task may lead the
data item to exceed this quota fleetingly. It is the responsibil-
ity of off-line dimensioning tools to increase the latencies and
to compute the quotas accordingly. If these tools commit
errors, it is simple to detect it. Either the dynamic allocations
of memory on the cluster cause an overflow of the memory
available on the cluster, thus generating a serious exception.
Or the memory is under-used and the tasks placed on standby
without justification, and this may be revealed with “profil-
ing” tools, as they are known in the art.

In order to further specify the notion of quota, it is impor-
tant to note that these apply to all the data dependencies, that
is to say both inside a cluster and also between clusters, or
even between a cluster and the central memory.

There are several ways of implementing quotas. In the
present example, for reasons of optimizing the use of the
memory, it is advantageous not to use separate memory buff-
ers for the producer and for the consumer, except in the cases
of communication between clusters. This implies that it is
sufficient to allot quotas either with regard to the production
of the data or with regard to the amount of data offered for
consumption for a given task. In both cases, optimal control
of'execution makes it essential to know which is the producer-
consumer pair of an over-quota data item. This pair is not
necessarily unique for a particular data item, it is therefore
necessary to be able to discriminate among the possible can-
didates. In this way, the task manager or the programmer,
depending on the phase of development, is capable of detect-
ing the exact origin of the random vagaries, so as to confine
the random vagaries and to prevent normal operation of the
other tasks from being directly undermined. Hereinafter in
the text, a particular implementation of this identification of
over-quota is shown by looking at the problem from the point
of view of the data under consumption. The solving of this
identification from the point of view of a quota on productions
is a dual problem in the mathematical sense of the term.

This mechanism can nonetheless be implemented in a sim-
plified manner, if we do not seek the maximum control of
execution, merely specifying for each data item the number of
potential consumers. It then suffices to decrement this value
on each potential access in order to determine the number of
remaining potential consumptions. It is however in this case
impossible to determine, in the case where there are several
consumers, which one is responsible for the lockup.

There are of course other ways of controlling the size of the
streams during the communications, the important thing
being to be able to detect data loss when the capacities of a
communication channel are exceeded. Thus it is also possible
to provide the producer with an information item about the
memory room available on the communication channel.
Advantageously, this solution can be implemented by credit-
based mechanisms, which is done however at the price of a
loss of consistency between the way in which the flow of the
data operates inside the cluster and outside the cluster. The
receiver cluster dispatches in this case to the cluster contain-
ing the producer credits corresponding to the memory size

10

15

20

25

30

35

40

45

50

55

60

65

18

available. The dispatching of the data by the producer is then
conditioned by the presence of sufficient credits.

The memory manager 63 receives several signals. For
example, it can receive a signal indicating the end of exploi-
tation of a memory block by a task. It then updates its allo-
cation tables. If the block concerned is no longer used by any
execution task, including by DMA tasks, then the manager
frees the block for reuse. The memory manager 63 can also
receive a signal indicating the allotting of a block to a task. For
example, if a data block is produced by an execution task
which does not itself consume the data, then the block is
simply allotted to the various consuming tasks. The memory
manager 63 must verify that this allotting does not cause any
violation of memory quota for the consuming task in relation
to this data item. The memory quotas are provided as con-
stants to the memory manager 63 by mapping-routing tools.
For each quota exceeded, an exception is reported to the task
manager 62. After a quota has been exceeded at the level of a
task, the memory manager 63 also dispatches a signal to the
task manager 62 if the over-quota disappears at the level of the
task in question, subsequent to a data consumption.

Inthe present patent application, a block denotes the small-
est element managed by the memory manager 63. The size of
ablock can vary between the smallest addressable element in
a memory bank 44 to 59 up to a complete memory bank. The
coarser the granularity, the simpler the memory manager 63 is
to program. But a coarse granularity brings about a very
significant under-usage of the memory resources, this having
consequences in terms of performance on the system as a
whole. On the other hand, too fine a granularity renders the
memory manager 63 extremely complex, and this may con-
stitute a bottleneck for the system. There is therefore reason to
find a good compromise regarding the granularity of the
blocks. Moreover, it is possible in the execution model pro-
posed by the present invention to have blocks of variable size.
However, a preferential embodiment can consist in using a
fixed block size, so as to adopt a homogeneous framework
with good property in terms of determinism. Moreover, man-
aging blocks of variable size makes it necessary to introduce
a defragmentation function to keep the addressing space con-
tinuous.

Be it physical or virtual, it must be possible for the routing
of'the communications to be performed by oft-line tools. This
therefore involves static or static by phase routing. In order to
guarantee maximum communication latencies and therefore
deterministic execution of the application, a routing mecha-
nism with guaranteed latency for the routings performed off-
line is necessary. Several schemes make it possible to achieve
this result, going from simple bandwidth reservation to much
subtler variants such as “Time Division Multiple Access” or
“TDMA”, as it is known in the art. Note that certain commu-
nication networks accept fixed explicit routings, such as
multi-bus networks or dedicated interconnection switching
systems. The node of the NoC 31 local to the cluster C10 is
associated with the DMA tasks charged with inputting or
outputting the data of the cluster C10. Together with the DMA
interface 61, it is the interface which tailors the DMA task to
the protocol of the network formed by the NoC 31. On the
other hand, the way the data are propagated between the
nodes of the network does not impact the execution method,
which endeavors to be equally well suited to networks of
“packet-switch” type as to networks of “circuit-switch” type,
as they are known in the art. The specification of the path to be
traversed by the data must however be able to be distributed.
In a network of “packet-switch” type, this involves param-
etrizing the communication paths in the data packets. A dis-
tributed configuration interface may make it possible to par-

US 9,164,807 B2

19

tially configure each node of the network traversed by a
communication, the opening of a communication path having
not to disturb an existing path. It should be noted that if the
NoC 31 is replaced with a communication structure of the bus
type, then this structure has no network node and conse-
quently only an interface for tailoring and access to the bus is
implemented in each cluster C10 to C115.

The aim of the DMA tasks is to ensure the data exchanges
between the clusters C10 to CI15. Thus, they are brought into
play when the data production and consumption tasks are not
onthe same cluster. A processing task executing on the cluster
Cl10 uses only data present in the banks of memories 44 to 59
in the cluster CI0. It is therefore necessary to transfer data
between the clusters CI0 to CI15 when tasks executed on
remote clusters have data inter-dependencies. Thus, the send
tasks do not create any data, but read data local to the cluster
Cl0 so as to rewrite them to the memory space of another
cluster. The DMA tasks may be more or less complex as a
function of the hardware support at their disposal. Thus, the
data access functions may be extremely basic, such as data
access in “burst” mode, as it is known in the art. In this case,
the production and consumption tasks must be tailored to
organize their data so as to obtain good performance. Con-
versely, if the data access functions are complex, of DMA
type for example, then the DM A tasks can reorganize the data
and thus help to simplify the processing tasks. For example, to
carry out a communication from cluster C10 and to cluster
Cl115, several conditions must be fulfilled. First of all, a DMA
task managing the dispatching of data to the cluster C115 or to
the central memory 34 must be activated in the cluster CI0.
That is to say that all its minimum prerequisites are satisfied,
for example the recipients of the data are ready as is the first
set of data to be dispatched. The send task must then be
allocated to a DMA resource in the cluster C10. Moreover, a
DMA task managing the reception of data coming from the
cluster C10 must be activated in the cluster C115. Moreover, a
memory space must be available for receiving the data.
Finally, the physical communication path must be open, that
is to say the nodes of the NoC 31 must be configured to allow
the transmission of the data. It is apparent that a certain
number of synchronizations must be adhered to so as to
ensure a communication. Notably, there exists a dependency
between the DMA tasks so as to ensure that the sender and the
receiver are indeed present simultaneously. In the particular
case of parallel communications, for example when the clus-
ter C115 may receive data from several sources, it is necessary
either to have available sufficient DMA resources in the clus-
ter C115 to execute DMA receive tasks in parallel, or that
DMA receive tasks are placed on standby in the cluster C115,
each communication integrating an identifier making it pos-
sible to ascertain the DMA receive task to be executed.
Indeed, each channel is managed by a pair of DM A tasks, one
a send task and the other a receive task. Thus, a convergence
is seen from the receiver side as a superposition of DMA
tasks, one per incoming channel. This makes it possible to
efficiently manage the phase shifts between the incoming
flows. On the send cluster C10 side, it is also possible for there
to be several communications to be managed in parallel. If
this is the case it is therefore necessary either to have available
sufficient DMA resource in the cluster C10, or an arbitration
function which manages the DMA tasks. For example, the
task manager 62 can undertake this arbitrator function. How-
ever, for reasons of performance and bandwidth management
onthe NoC 31, it may turn out to be preferable to integrate the
arbitration function into a manager dedicated to the DMA
tasks which is located as close as possible to the DMA func-
tions and consequently is more reactive. A possibility of

20

25

30

40

45

20

optimization integrating a “multicast” mode and/or “broad-
cast” mode allowing simultaneous dispatching to several
recipients should be noted here. This option is, however,
expensive and its profitability must be studied on a case by
case basis for each type of platform. In the same way, several
reception DMA tasks can be managed, either by the task
manager 62, or by the manager dedicated to the DMA tasks.
Such a manager dedicated to the DMA tasks, notably if it is
implemented in only one of the units 40 to 43, has however a
limit in terms of number of DMA tasks that it can manage. It
is therefore very improbable that all the DMA tasks of an
application may be managed simultaneously by this dedi-
cated manager. In such a context, a collaborative approach
can be envisaged between the task manager 62 and the man-
ager dedicated to the DMA tasks. The task manager 62 would
for example be responsible for selecting and deselecting the
DMA tasks having to be managed by the manager dedicated
to the DMA tasks. Advantageously, the necessary memory
space in the banks 44 to 59 that is required for the reception of
each communication can be guaranteed during the compila-
tion and the static distribution of the tasks by link editing for
example. The opening of the communication path is a step
intimately related to the nature of the network integrated into
the system, namely the NoC 31 in the present exemplary
embodiment. A network interface unit is therefore in charge
of'the exploitation of the network, namely the DMA interface
61 in the present exemplary embodiment. For example, the
interface 61 is in charge of the packetization and the writing
of the header for a network of “packet-switch” type. For a
network of distributed “circuit-switch” type, a port for partial
configuration of the network must be provided. If the network
is a non-distributed structure of “circuit-switch” type, a cen-
tralized unit must be added to the system and one of the two
DMA tasks involved in the communication must ask it for the
creation of a path if the latter does not exist. For a structure of
bus type, a sharing mechanism must be present in each cluster
among CI0 to C115. On the other hand, no routing mechanism
is then necessary any longer, since the protocol of the bus is
charged with the identification and synchronization of the
communicating elements.

It is important to note that the present invention, although
based on a parallel hardware architecture and on an execution
model making it possible to exploit this parallelism, lends
itself, however, to sequential processing operations of data
flow type. Inthe example of F1G. 5, several means can be used
to synchronize and share data between the PEs during a
processing of data flow type. It is however important to main-
tain a uniform inter- and intra-cluster solution, so as to ease
the programming of the architecture. For example, the tasks
executed in the cluster Cl10 and reaching their memory quotas
can automatically go idle without involving the cluster man-
agement module 60. This entails a local synchronization
mechanism, which must be available not only between each
of'the units among 40, 41, 42 and 43 participating in the data
flow processing, but also available between each of the clus-
ters among Cl0 to Cl15 if the processing is distributed
between clusters. The detection of a full or empty destination
memory space can be carried out by virtue of the previously
presented system of quotas. In a preferential manner the
cluster management module 60 is used to manage the syn-
chronizations between the various PEs. Even though this
method increases the penalties due to synchronizations, it
affords a more general picture of the execution state of the
various allocated tasks. This mechanism forms the subject of
a more detailed analysis through a few applicational
examples.

US 9,164,807 B2

21

A functional specification of each of the management
means can be proposed, independently of the embodiments
adopted.

The means for managing the tasks encompass all the
mechanisms which make it possible to update the state of the
tasks on the cluster. A minimal implementation ought to
reveal at least two possible states for a given task: the standby
state and the ready state. The standby state is characterized by
the fact that the task may not be executed through lack of at
least one element necessary for its execution. The list of
necessary elements can be very varied. By way of example
may be cited the availability of a PE, the availability of
memory or of data to be processed. This list can also depend
on the nature of the task. Thus a communication task will not
necessarily have the same types of requirements as a process-
ing task. The ready state is characterized by the fact that the
task can employ all the resources necessary for its execution.
The allocation carried out by the means for managing the
tasks is virtual, since they are not in charge of setting up the
physical link between the task and the execution resources.
The way in which the system is implemented can lead to the
addition of further states, so as to take better account of
certain alterations in the execution of the tasks. By way of
example, a given task may have begun its execution, and then
be preempted during processing.

The means for managing the PEs encompass all the mecha-
nisms which make it possible to allocate a task to a PE. Thus,
at least two states can be associated with each PE: the free
state and the allocated state. The free state is characterized by
the fact that the associated PE is not allocated to a task. The
allocated state is characterized by the fact that the associated
PE is allocated to a task. Unlike the task management means
for which allocation is virtual, the means for managing the
PEs carry out a physical allocation of the resources. Just as for
the management of the tasks, the way in which the system is
implemented can lead to the addition of further states so as to
take better account of certain alterations in the management
of the PEs. By way of example, the implementation of idle
modes or low consumption modes for the PEs can be handled.

The memory management means encompass all the
mechanisms which make it possible to allocate memory, to
associate it with one or more given tasks and to maintain it as
long as the data item is potentially useful. The memory space
allocation is aimed at reserving a memory space portion pre-
viously considered to be free, that is to say no longer contain-
ing data that needs to be held locally, so as to be able to
associate it with tasks. The association thereafter allows the
allocated memory space to be used by one or more tasks for
the processing requirements: for example reading or writing
of the data respectively produced or consumed, or even for
intermediate processing operations. Rights management will
be able to ensure that an unstable data item, that is to say one
being written or being modified by a task, is not available in
read mode for other tasks. Finally, a memory space can be
freed either in the form of an explicit command or because it
no longer has any allocation, or by a combination of the two
mechanisms.

When several clusters have to exchange data or informa-
tion by way of a communication channel, it is useful to set up
means for managing the communications which encompass
all the mechanisms allowing control and management of the
communication structure. These management means are very
dependent on the nature of the communication structure.
Thus, in the case where a bus is used, this can include the
management of the priorities and addressing. In the case of an
NoC, this can include management of the routing and of the
bandwidth associated with each communication.

10

15

20

25

30

35

40

45

50

55

60

65

22

The means for managing the cluster consist at the mini-
mum of all of the following management means: means for
managing the tasks, means for managing the PEs, means for
managing the memory. If several clusters have processing
operations that must communicate with one another, it is also
useful to have a means for managing the communications. All
the interactions between these management means and the
remainder of the platform, as well as the mechanisms useful
for their synchronizations, are encompassed within the means
for managing the cluster.

The manner of operation of the present invention is illus-
trated subsequently through three very different examples of
execution. An exemplary video decoding application illus-
trates a data flow sequential processing. An exemplary mor-
phing application illustrates a processing which is much less
regular at the level of'its accesses. Finally, an image process-
ing application illustrates a massively parallel processing,
with the dynamic control flow.

FIGS. 6 to 11 illustrate an exemplary execution of a mor-
phing application. A morphing application is used for motion
estimation in certain advanced image compression and
decompression algorithms, to take account of effects that are
more subtle than the customary translation of “macroblocks™
according to the usual image processing terminology. Much
less regular at the level of its accesses than a traditional
motion estimation of “block-matching” type, it makes it pos-
sible in theory to increase the compression rates obtained in
the video coder. The data are more compact, but at the price of
more complex computations that are more directed by the
data. It is a more intelligent algorithm, and, in this respect, it
is more demanding in terms of memory access and processing
operations. The principle of the algorithm is a deformation of
the image which makes it possible, inter alia, to model zooms
or rotations of the camera. This algorithm is also used for
texture computations in graphical rendition systems. The
basic morphing algorithm can be translated in the following
manner into code form in the C language:

for (x=0; x<XM; x++)

for (y=0; y<YM; y++)

{u=F,(x);

v=F,(y):

dest[x][y]=src[u][v]:}
The constants XM and YM represent respectively the width
and the height of an area of interest. Several important
assumptions are made so as not to unduly simplify the imple-
mentation of this algorithm on the proposed architecture.
First of all, the assumption is made that the functions F, and
F, are differentiable. This assumption is reasonable for a real
transformation system. Moreover, the assumption is made
that the computation time for the functions F, and F, is suffi-
ciently large with respect to the time for communication with
the central memory. This assumption is necessary for the
implementation of parallelism on such a platform, otherwise
the processing is entirely directed by the transmissions with
the memory and the parallelism cannot be exploited. Finally,
the assumption is made that the image is High Definition
(HD), or at the least that it cannot be contained in the local
memories of the clusters embedded on the chip, this is why
the “src” and “dest” fields are contained in the central
memory. This assumption is obvious within the framework of
the current technologies. It also makes it possible to show
specifically how the exchanges with the central memory pro-
ceed.

When splitting this code part into elementary activities, it is
assumed that it operates on four clusters and that the generic-
ity of the reasoning must not be broken. But this implies that
the processing operations are sufficiently computational to

US 9,164,807 B2

23

occupy these four clusters. Within the framework of the
search for transformations, this assumption is entirely realis-
tic. Thus, on each cluster, the distribution of the processing
operations over the PEs is as follows:

four execution tasks for the computations Fx and Fy, which
are the most expensive computations;

aprocessing charged with evaluating the limits of the mac-
roblock to be loaded from the central memory and from
the neighboring clusters, if appropriate;

a DMA processing for the loading of the macroblocks;

a main processing of the loop which performs the mor-
phing with the block loaded on the basis of the com-
puted/predicted macroblock;

a DMA processing to signal the macroblock currently
loaded in the local memory of the cluster to the neigh-
boring clusters;

a DMA processing to output the data transformed in central
memory.

In a tasks chart, FIG. 6 illustrates tasks T1, T2, T3, T4, T5,
T6 and T7 that may correspond to these processing opera-
tions. In this figure, the tasks executed on the PEs appear in a
circle and the tasks executed on the DM As in rectangles. This
formalism will be adhered to throughout the present patent
application. The tasks T1, T2, T3, T4, T5, T6 and T7 will be
detailed subsequently.

The routing of the communications is done as a circular
chain between the various clusters. The mapping of the tasks
is done sequentially in the order of the chain defined by the
communications. The first cluster receives the processing
task of the first macroblock, the second cluster receives the
processing of the second macroblock and so on and so forth
until the fourth cluster. Then the first cluster chains together
on the fifth macroblock and so on and so forth. All the pro-
cessing operations of the image blocks are mapped to the four
allocated clusters.

An execution on a cluster is conducted locally as follows.
The DMA access is engaged for the predicted macroblock.
The initialization of the prediction of the macroblock is done
as a uniform grid of the High Definition (HD) page, the grid
being proportional in height/width and tailored to the
memory capacity of a cluster. For example, it must not fill
more than 75% of the local memory of the cluster. As soon as
the loading in progress terminates a predicted-macroblock
line, the DMA processing warns the manager in charge of the
memory and task. The main processing begins in parallel with
the loading. Nonetheless, this processing can only actually
take place in the processing area of the current block, that is to
say on the basis of Fx(xm) and Fy(ym). This is ensured by a
mechanism for preparing the data locally for the PE doing the
processing, commonly termed “fetch” in the art.

The “fetch” mechanism simply disables the task if the
source data have not yet arrived at the time of reading them,
doing so until the data are available. If the source coordinates
computed in parallel on the four PEs are not yet available, the
task is stopped by the task manager because of unresolved
dependency. They are then in the “stalled” state, as it is known
in the art. If the source coordinates computed exceed the
predicted widened macroblock, the memory manager
uploads an exception to the task manager because of overflow
of the allocated memory areas. This behavior is entirely
exceptional for regular transformations. Thus, this autoregu-
lation mechanism produces the output macroblock in tandem
with the arrival ofthe input data. Error cases are also managed
naturally.

The main processing supplies the DMA output processing
in tandem, by way of a memory area used in “buffer” mode,
asitis knownin the art. The main processing supplies the four

10

15

20

25

30

35

40

45

50

55

60

65

24

processing operations of transformation/morphing computa-
tions with pairs of points (X,y) to be computed/processed and
waits for the results (u,v) therefrom. It also provides the
current limits of the transformation, so as to supply the next
memory macroblock’s prediction processing. The next mac-
roblock’s prediction processing uses the previous data of
macroblock limits and the current data to make a prediction.
For example, it can make the prediction by extrapolating the
derivative or optionally the second derivative. But in view of
the difference between the sizes of images and the sizes of
macroblocks, it is probable that the difference between the
two extrapolation algorithms may be hardly perceptible.

FIG. 7 illustrates a block prediction and transformation
algorithm. The general transformation of an (x,y) rectangular
block 80 by the functions Fx and Fy culminates in a (u,v)
domain 81 of the source. A box 82 is the XY envelope rect-
angle predicted by virtue of the linear or quadratic extrapo-
lation arising from the previous transformations of the same
(x,y) domain. For this purpose, the speeds of this envelope
rectangle are evaluated at each transformation. In the case of
quadratic extrapolation, the accelerations of this envelope
rectangle are evaluated. A margin 83 is taken around this
prediction rectangle so as to be reasonably certain that the
source points of the transformation are in the local memory of
the cluster. This is not compulsory, but makes it possible to
avoid the exception process. The dimensions of the final
rectangle to be loaded are therefore dependent on the data.
But though the X andY dimensions can vary very freely as a
function of the transformations performed, the area of the
rectangle is for its part constant. Therefore the memory used
is constant on a cluster. Moreover, a possible optimization
consists in contriving matters so that the additional data
loaded are not discarded, but transmitted to the neighboring
cluster, so that there are fewer needless accesses to the central
memory.

The task T1 is a DMA loading task for the memory block,
which is arranged taking account of the data already present
on the adjacent cluster. The dependency of this task is related
to the image synchronization and to the availability of a
channel for communication with the DRAM. For the first
cluster, the task T1 is activated as soon as the application is
launched. The tasks T1 executing on the other clusters are
activated thereafter as the blocks are consumed. The param-
eters computed in the previous go are used. When dealing
with the first image, T1 uses the default downloading param-
eters. The task T2 is of main loop, that is to say a distribution
task for the morphing computation. The dependency of T2 is
effected on the availability of data of the loading block pro-
vided by T1. The tasks T3, T4, T5 and T6 are morphing
function computation tasks. They supply XY envelope pre-
diction buffers by providing the extreme pairs (u,v) for each
line processing, the task T3 for extremal obtained from the x
minima and the task T6 for extremal obtained from the x
maxima. The task T7 is a rectangle prediction computation
task. The dependency in terms of data is effected on the data
provided by T3 and T6. It provides the prediction rectangle
for the task T1 at the next pass.

FIG. 8 illustrates by a timechart an execution scenario for
a cluster. FIG. 8 is simplified, since it shows only a single
transfer of packets from the memory. A real execution would
give rise to more overlap between communications and
execution.

First of all, the task T1 requests loading of the envisaged
rectangle to the DRAM controller, and then waits from an
instant t, to an instant t;.

Next, the DRAM controller uses the information provided
by the tasks T1 to download the memory blocks in DRAM

US 9,164,807 B2

25

and dispatch in tandem the blocks to the various clusters, from
the instant t, to an instant t, and then from the instant t, to an
instant t5.

Thereafter, when data are transmitted to the cluster at the
instant t,, T1 takes control and announces the loading of each
data block to the task controller for the resolution of the
dependencies and to the memory manager for the updating of
the assigned memory blocks. This is illustrated by two arrows
starting from T1 at the instant t;.

Hereinafter, the task manager sets T2 executing. The task
T2 distributes points of (u,v) pair computations to the tasks
T3, T4, T5 and T6.

Next, the task manager sets the tasks T3, T4, T5 and T6 as
tasks to be executed on the PEs. Four free PEs having been
allotted to the tasks, the task manager transmits to the
memory manager for each task the lookup table of correspon-
dence with the virtual memory, also called “mapping of the
virtual memory”, which has been associated with them by the
compilation tools. This step can be started well before if PEs
are free, and then as and when they become free. For example,
a fine arrow from T2 on PE1, on task manager, returns to T6
scheduled on PE1.

Thereafter, the memory manager constructs the local-
translation tables for each task with the data currently present
and transmits them to the PEs chosen by the task manager.
This is illustrated by an arrow starting from the memory
manager and going toward Mem1 just after the instant t.
Identical arrows toward Mem?2 and Mem3 for the tasks T3/T4
and the tasks T5/T6 respectively have not been represented in
order to simplify FIG. 8. It should be noted that, on the
timechart of FIG. 8, the arrows going from the memory man-
ager and going toward the memories do not correspond to a
real signal from the memory manager to said memories. They
correspond simply to the updating of the memory manager
allocation tables.

In parallel, the task manager provides each chosen PE with
the order to begin the task. As soon as the arrangement of the
code is provided by the memory manager, the start of the code
is loaded into the local memory of the cluster and execution
begins: start of the loop and then launching of the computa-
tions of Fx and Fy by the tasks T3, T4, T5 and T6, the
launching of which is done in tandem after the instant t;.

When the computations of a pair (u,v) are finished for T2,
the subsequent execution makes it access a coordinate of the
source image. The following cases can arise:

the data item is in local memory of the cluster. In order to

be manipulated this data item must be accessed by the

PE assigned to its processing. Two cases can therefore

occur depending on the state of the PE translation table:

the PE’s local translation table is already up to date: the
PE therefore knows how to access it and can therefore
manipulate the data item so as to carry out the pro-
cessing assigned to it.

the PE’s local translation table is not up to date: the PE
does not know how to access the data item, the infor-
mation item is transmitted to the memory manager
which sends back an update of the PE’s local transla-
tion table. FIG. 9 illustrates by a timechart the dura-
tion corresponding to the time of suspension of PE1
between two instants t, and t,, the time required for
updating its translation table.

the data item is not in local memory of the cluster. Initially,

however, this happens as in the previous case, when the
local translation table is not up to date: the PE transmits
the request to the memory manager. Subsequently, two
sub-cases can be distinguished:

10

15

20

25

30

35

40

45

50

55

60

26

the data item forms part of the data which are envisaged
on the cluster according to the data provided by the
task manager to the construction of the tasks. The
information item according to which the task which is
executing on the PE is disabled, on standby awaiting
data from the task T1, is dispatched to the task man-
ager by the memory manager. FIG. 10 illustrates by a
timechart the duration between an instant t; and an
instant t, corresponding to the minimum time of sus-
pension of the execution of T3.

the data item does not form part of the data envisaged on
the cluster by the envelope prediction task T7: an
exception is uploaded by the memory manager to the
task manager for invalid memory access. The task
manager launches a task T1' on this event so as to load
the missing data item and its vicinity. The task T1' is
not represented in the figures.

Thereafter, the source point is stored in the local memory of
the cluster producing the task. At each line end, the task T2
produces the extrema of the current line for (u,v), so as to
supply the task T7. For all the lines or a few lines, the task T2
dispatches an intermediate production signal for the extrema,
so as to allow T7 to continue its execution on the newly
produced data.

The task T7 waits for at least one event of T2, according to
the same principle as between T1 and T2. It uses the extrema,
plus those of the previous image, to compute the new rect-
angle to be loaded, or indeed those of the yet previous image
for a second-order computation. If the task manager so
allows, that is to say if a PE is free, the task is periodically set
re-executing on each arrival of a pair of extrema. Once per
block, the task T6 produces its prediction for a future loading
and dispatches the end of block processing event.

The DMA task T8 merges the production buffers for T3,
T4, T5 and T6 in tandem with the arrival of a quartet of
production events for these 4 tasks. It transmits the update of
the destination image to the DRAM controller. It transmits the
unused source image data to the following cluster in the list,
since it needs them for the processing operations.

According to the dependencies, the termination of the tasks
must therefore begin with T1, knowing that a task T1' can
rarely appear. Next follow the tasks T3, T4, T5 and T6 accord-
ing to an order which depends on the difficulty of the pro-
cessing operations and the random vagaries of loading.
Thereafter follow T2 and T7 whose processing is short, with
local data only. Finally follows a task T8, not represented in
the figures, which marks the end of the processing of a block.
From the end of T7, the task manager can relaunch T1 with a
new block.

The task manager is composed of various elements among
which:

a list of the tasks comprising, for each task, the list of the
minimum dependencies necessary for its startup, the
events conditioning its execution such as a quota over-
flow or a standby awaiting data, and optionally a descrip-
tor of the virtual memory space manipulated;

a list of the virtual PEs usable by the task manager for
allocating the next tasks. This list is termed virtual since
the physical identification of the allocation of the PEs
may be managed by the management means of the PEs,
in relation to an availability of the PEs without neces-
sarily identifying them physically;

a list of tasks ready to be executed, satisfying all their
prerequisites;

a scheduler charged with matching up the tasks ready to be
executed with the corresponding PEs available on the
cluster. The most relevant scheduling policies depend in

US 9,164,807 B2

27

general on the field of application. For example, a criti-
cal time-real scheduling can advantageously use a
scheduling policy based on the EDF (“Earliest Deadline
First”) scheduling algorithm which gives priority sched-
uling to the tasks with the tightest deadlines. For a mul-
timedia system with weaker constraints, a less expensive
linear-time scheduling is probably better tailored. This is
why it is preferable for the scheduler to be program-
mable, reconfigurable or at least parametrizable.

The main role of the task manager on a cluster is therefore
to manage the fit between the PEs and the tasks. It must also
manage the chaining between the tasks, this generally
embracing two aspects: a data dependency aspect and a con-
trol aspect. Note that, more often than not, a control aspect can
be simulated by a correctly set up data dependency. Thus, the
task manager is one of the central elements of the cluster. It
receives multiple events originating from the various tasks,
including the DMA tasks, these events relating to the produc-
tion of data. But it also receives events originating from the
memory manager, to signal tasks which are on standby await-
ing data or available memory space. More exceptionally,
these events signal the tasks which exceed their allocated
memory quota. In the latter case, the role of the task manager
is to seek to limit the problems, by disabling if possible the
task which caused the quota to be exceeded. This aspect will
be detailed subsequently, in conjunction with the controls of
flows in the second exemplary application.

The local memory space of the cluster is managed by the
memory manager. [t must allow as transparent as possible an
execution of the tasks on the PEs. In the present example, it
must be able to render transparent the use of a High Definition
image which does not fit on the chip, and still less on a cluster.
For this purpose, it needs data production and usage tables,
which match the correspondence between the virtual memory
and the tasks in the local memory of the cluster. It also needs
the assistance of the tasks which must tell it when they have
produced or finished using data stored in the local memory of
the cluster, by dispatching a signal to the cluster manager. For
this purpose, special instructions can for example be inserted
into the code of the tasks by the compilation tools or by the
programmer. It must also provide and update the memory
translation tables for the PEs. In the previously illustrated
scenario of executing the morphing application, the interac-
tions between the memory manager and the remainder of the
cluster can be synthesized in the following manner:

first of all, the various tasks are started up: as long as the

task T1 has not received the requested data, the transla-
tion tables at the cluster level and at the level of the tasks
T2 to T6 are not fed with the data of the predicted block.
If nonetheless the memory accesses occur in the pre-
dicted block, the memory manager simply tells the task
manager that the data requested by the tasks are not yet
available. The task manager can, according to the sched-
uling policy and the tasks present, choose to leave the
tasks on standby or commute them to switch them for
other more urgent ones:
if the requested address is outside what the task is pre-
sumed to be able to access, an exception is uploaded
to the task manager. If this involves access to the
source image, the exception procedure must therefore
manage a loading prediction error. The other cases do
indeed involve an error, to be processed as such. The
way of managing this at the task manager level
depends on its programmability level. This can be
programmed as an exception program for the task
manager, or simply be processed as a signal to launch
the exceptional-loading task T1'.

30

40

45

50

28

each time T1 produces a data block, it informs the memory
manager of this. As illustrated by FIG. 11 by virtue of a
detail of the timechart around the instant t, the memory
manager:
deallocates a block 1 corresponding to the communica-
tion, this being illustrated by “Com. Buf” on “Mem1-
block1” at the instant t; in FIG. 11;
reallocates a new block 2 for the communication so as to
compensate for the one lost in respect of the commu-
nication channel, this being illustrated by “Mem1-
Block2” in FIG. 11:
if this reallocation fails, an exception signal is
uploaded to the task manager to signal that the
communication is at fault.
assigns the block to the consuming tasks T2 to T6, while
verifying that the memory quota for this data item is
not exceeded for each task. If this memory quota is
exceeded, a signal is dispatched to the task manager to
disable the network transmission channel. Otherwise,
the memory manager can, when choosing the imple-
mentation:
systematically warn the task manager and update the
local translation tables for the tasks T2 to T6;
wait until it has updated the address translation table
with all the addresses requested by a task before
signaling to the task manager that the correspond-
ing task can be restarted. This implementation is
the most effective, it will be preferred as far as
possible.
the memory manager also receives the data production
signals on the part of T2 for the task T7, and the
end-of-usage signals for the blocks of data loaded by
T1. Thus, when the tasks T2 to T6 have all dispatched
an end-of-usage signal for a given block, a compari-
son of the labels of the tasks which dispatched this
signal with the content of the list of labels of the tasks
using these data allows the memory manager to free
the portions of the local memory space of the corre-
sponding cluster, for reuse by other data;
just as for the tasks T2 to T6 with the data produced by
T1, the task T7 can be activated in tandem with the
production of the extrema of the transformed block.
in tandem with the production of the destination image, the
task T8 transfers the data to DRAM through the NoC,
and frees the blocks of local results which can therefore
be reused;

optionally, the supernumerary data loaded in the “prefetch”

phase as it is known in the art, which is a mechanism for
early loading of the data, can be transmitted to the fol-
lowing cluster which can thus avoid having to pass
through the DRAM to obtain a part of the data that it
needs.

The mechanisms for executing a morphing application
highly directed by the data on a massively parallel architec-
ture according to the invention have been described. Making
appropriate use of the potential parallelism in such a context
is very tricky but achievable by virtue of a “prefetch” mecha-
nism which is both aggressive and efficient. The “prefetch”
prediction error boxes are also taken into account by an
exceptional procedure which is, however, simple to imple-
ment. Access to the data is a fundamental point of parallel
architectures, which is particularly developed in the execu-
tion model in regard to the architecture according to the
invention.

FIGS. 12,13 and 14 illustrate an exemplary execution of an
MPEG-2 decoding application. Today, MPEG-2 decoding is
no longer considered a difficult application. It does not

US 9,164,807 B2

29

require specialized processors, but remains a tricky applica-
tion in a monoprocessor framework when involving “Full
HD” images, as they are known in the art. It is especially a
noteworthy application since it is typical of the data flow
sequential processing operations. Moreover, it will probably
be inescapable in the future, the applications which transmit
video streams proliferating. MPEG-2 decoding is therefore a
demonstrative industrial application of an important field for
forthcoming embedded systems.

In a tasks chart, FIG. 12 illustrates a split-up into typical
tasks of the MPEG-2 decoding. This chart does indeed illus-
trate a model with a significant data flow aspect, making it
possible to analyze the implementation of the architecture
according to the invention for processing operations of this
type. It illustrates a variable-length decoding task 90, a mac-
roblocks data reshaping task 91, a quantization task 92, an
inverse discrete cosine transformation task 93, a saturation
task 94, a motion vector decoding task 95, a luminance
motion compensation task 96, a motion compensation task 97
for the red chrominance, a motion compensation task 98 for
the blue chrominance and an agglomeration and transforma-
tion of color space task 99. In the present example, the
assumption is made that the clusters comprise four PEs and
that the tasks are allocated statically to the PEs. This assump-
tion is close to what is done on prior art dedicated decoding or
encoding systems. It is not an intelligent implementation on
the proposed platform. Basic tasks, including the tasks of
FIG. 12 and DMA tasks for transferring data between the
clusters 1, 2 and 3, are distributed in the following manner:

Cluster 1:

atask TDMAI1C1: DMA import of the MPEG-2 stream
into cluster 1,

a task T1C1: variable-length decoder;

a task T2C1: reshaping of the data of macroblocks;

a task T3C1: quantization;

a task T4C1: motion vector decoder;

a task TDMAO1C1: DMA export of the chrominance
motion vectors;

a task TDMAO2C1: DMA export of the luminance
motion vectors;

atask TDMAO3C1: DMA export of the quantized mac-
roblocks.

Cluster 2:

a task TDMAI1C2: DMA import of the chrominance
motion vectors;

atask TDMAI2C2: DMA import of the quantized mac-
roblocks;

a task TDMAI3C2: DMA import of the reference
chrominance macroblocks;

a task T1C2: inverse discrete cosine transform;

a task T2C2: saturation;

a task T3C2: motion compensation, red chrominance;

a task T4C2: motion compensation, blue chrominance;

a task TDMAO1C2: red chrominance DMA export;

a task TDMAO2C2: blue chrominance DMA export.

Cluster 3:

atask TDMAI1C3: DMA import of the red chrominance
macroblock;

a task TDMAI2C3: DMA import of the blue chromi-
nance macroblock;

a task TDMAI3C3: DMA import of the luminance
motion vectors;

atask TDMAI4C3: DMA import of the reference lumi-
nance macroblock;

a task T1C3: red over-sampling;

a task T2C3: blue over-sampling;

a task T3C3: luminance motion compensation;

5

10

15

20

25

30

35

40

45

50

55

60

65

30

atask T4C3: agglomeration and transformation of color
space;

a task TDMAO1C3: DMA export of the decoded video
stream.

It should be noted that the inter-cluster communication
framework always involves two tasks: a data exportation task
and a data importation task, for example TDMAO2C1 in
cluster 1 and TDMAI1C3 in cluster 3. A communication
channel between two clusters is therefore defined by a source
memory space, a DMA export task, a communication link, a
DMA import task and a destination memory space. If one of
these five elements is absent, this implies that there is no
communication link between the two clusters in question. Itis
therefore the responsibility of the mapping/routing tools to
ensure that the dimensioning of the memories and network is
correct. In the case of communication error due to the absence
of one of these elements, the error is detected and an excep-
tion is generated. The present document does not provide any
additional elements relating to the mechanisms for managing
this exception. Such an error does indeed give rise to different
processing operations depending on the field of application of
the system. With these assumptions, three clusters are neces-
sary in order to decode a video stream. On each cluster, there
are therefore four tasks for the PEs, i.e. one per PE. This
arrangement is conventional for stream processing operations
where, as far as possible, the processing operations are
mapped statically and where the load is balanced through the
play of production/consumption along the virtual “pipeline”
asitis known in the art, the virtual “pipeline” representing the
processing ofthe stream. As explained subsequently, this type
of regulation is perfectly possible in the operating scheme of
the architecture according to the invention. Moreover, this
does not rule out the possibility of thinking about other
chunks of applications which would operate in parallel on
these clusters and on others, or even of thinking of several
decoders on several triples of clusters if the power of the PEs
on the clusters turns out to be insufficient for big images.
Nevertheless, a task is necessary for ensuring the order of the
processing operations at input and at output.

The execution along the software “pipeline” defined by the
arrangement of the tasks illustrated by FIG. 13 in a chart can
be summarized in the following manner:

TDMAI1C1 loads the stream in tandem with its arrival in

the local memory of the cluster;

T1C1 has a quota related to the number of advance packets,
thereby making it possible to stop the transfers as soon as
the number of advance frames is sufficient, probably
between 3 and 5 frames depending on the communica-
tion latencies. If the management means allows alloca-
tion by variable size blocks, it will be possible to finely
dimension the quota. If this is not the case it will be
necessary for the quota to be a multiple of the fixed size
block;

likewise, T2C1 and T4C1 have quotas on the numbers of
macroblocks and of undecoded vectors before saturat-
ing. If this tier is reached, the task manager disables the
producer task, that is to say T1C1. If the situation does
not unblock itself, then neither does the already disabled
task T1C1 any longer consume the input data provided
by TDMAI1CI1, thereby culminating in the disabling of
the communication. From the moment that the quotas
are correctly evaluated, the mechanisms previously
described for the controls of quotas make it possible to
carry out data stream regulation in an implicit manner,
without weighing heavily on the implementation of the
processing operations. If they are not correctly dimen-
sioned, the overloads of quotas cause explicit errors of

US 9,164,807 B2

31

memory allocation or of communication. The under-
loads of the dips in performance are then readily in
evidence. It is taken for granted that the system itself
performs its own load balancing under nominal opera-
tion, simply by setting the quotas during compilation;

taking this for granted, the conduct of the application does

i

—+

not in itself pose any problems. As long as the data of a
task are not ready, the task is placed on standby or
switched if the system contains other applications and if
the scheduling policy so allows. As soon as ithas its data,
it can perform processing operations and produce output
data, unless the consuming task or tasks are too slow to
process them. If this is the case, the producer task is
suspended by the task manager, because of the violation
of memory quota of a consuming task, as explained for
the morphing application;

is apparent that the passage of the data between the
clusters is done by taking note of the DMA tasks which
define a communication channel, provided that some
memory exists on arrival. This channel is related to a
routing of the communications between processing
operations, arising from the mapping/routing of the pro-
cessing operations of the application on the chip. The
communication therefore involves the source data stored
in the local memory of the origin cluster. The commu-
nication also involves the DMA send task. The commu-
nication also involves the channel of the NoC where the
bandwidth has been reserved for said communication by
way of the routing. Finally, the communication involves
the DMA receive task and its associated memory,
reserved dynamically by the memory manager, on the
destination cluster. The union of these four elements
makes it possible to establish a communication in time
and latency which is bounded statically, and therefore
deterministic. This property is important for numerous
cases of applications, even if it is not the case for
MPEG-2 decoding;

the ability to disable the data producer in over-quota for a

given consumer makes it possible to selectively disable,

and no more than necessary, the tasks dependency chain,

including when there is transfer of data through the NoC

in the middle of this chain. Resumption is also auto-

matic, everything relies on a control of the memory

quotas by the compilation chain. Exception mechanisms

are implemented for detecting problems when this

dimensioning is defective, as illustrated by an example

in the timechart of FIG. 14:

it is assumed that the over-sampling of the red chromi-
nance by T1C3 is over-quota at an instant t,. This is a
fairly long operation and, moreover, this cluster is
loaded with operations which may demand a signifi-
cant amount of memory, notably at the end of the
video processing chain. Matters may be contrived so
that the memory manager informs the task manager,
which disables the DMA transfer task TDMAI1C3.
As a DMA transfer operation is involved, a message is
dispatched to the task manager of the cluster 2 to
signal the anomaly. The corresponding NoC commu-
nications are illustrated in FIG. 14, these are commu-
nications 100, 101 and 102;

the task manager of the cluster 2 disables the DMA send
task TDMAO1C2;

if disabling continues, the task TDMAO1C2 passes to
over-quota at an instant t,'. If this is the case, the
memory manager informs the task manager, which
disables the producer task T3C2. At this level, only

30

35

40

45

50

32

the local chain for processing the red chrominance is
impacted, the remainder continues to operate nomi-
nally.
if it is assumed that the disabling is still not slackened,
T3C2 can also pass to over-quota at an instant t,", and
this may be done through two non-exclusive sce-
narios:
over-quota on motion vector: the memory manager
indicates the origin of the over-quota to the task
manager, which disables the DMA input task
TDMAI2C2. A message is transmitted to the task
manager of the cluster 1 to disable TDMAO1C1,
and this may then cause the disabling of T4C1;
over-quota on the decoded blocks for the red chromi-
nance: the memory manager informs the task man-
ager of the occurrence of the over-quota, which
disables the producer task T2C2;
The mechanism is therefore designed to disable the
minimum dependency chain, a chain constructed on
the dependency tree deduced from the inverse depen-
dency graph whose cycles are removed.
as soon as the task T1C3 is no longer over-quota at an
instant t,, the memory manager informs the task man-
ager which re-enables the task TDMAI1C3. The task
manager dispatches a message to the task manager of
the cluster 2, which re-enables TDMAQO2C2. In tan-
dem with the disappearances of the over-quotas, the
local memory manager informs the task manager,
which re-enables the tasks under the same conditions
as the disabling had taken place. The equilibrium of
the “pipeline” is therefore a natural emerging prop-
erty, with simple rules and with the sole assumption of
the correct dimensioning of the memory quotas.
if the quotas are poorly dimensioned, the memory man-
ager can detect it simply: the dynamic allocation pro-
vided for each data item at input takes place nominally
until the flawed situation occurs. At this moment, the
memory manager attempts to allocate memory for a
request which has been made, but is unable to satisfy
it since too much memory has been allocated else-
where. The memory manager must therefore upload
the exception to the task manager. The processing of
this type of exception is highly dependent on the field
of application and therefore is not specified in the
present patent application. It can be used, for
example, to detect anomalies in programs, including
in dimensioning programs. But it can also be used to
make an automatic on-line adjustment of certain
memory quotas for non-critical applications.

The remainder of the execution of the application does not
pose any particular problem and ought to be simple to
deduce on the basis of what has already been described
in the two example applications.

It is clearly apparent that the execution model of the archi-
tecture according to the invention is also well suited to appli-
cations of stream processing type. In this specific framework,
it employs simple mechanisms for dynamically balancing the
data flows, which are natural for specialists in this type of
processing. This proves the very good flexibility of the archi-
tecture according to the invention and of its execution model,
since it is just as able to manage this type of execution as a
much more dynamic task model, as has been seen within the
framework of morphing. What is important to understand in
this implementation is that the proposed architecture together
with its execution model is capable of executing in an efficient
manner, that is to say with optimal exploitation of parallelism,
the two types of models nested within the same application.

US 9,164,807 B2

33

This notably is what constitutes its originality. It is important
to note that the support of the data flow mode is effected not
only inside the cluster, but also between the clusters. The
description of the mechanisms managing the absence of data
or the saturation of the memories presages heavy pressure on
the task and memory manager. However, the particular man-
agement of these modes can be viewed hierarchically. Thus,
part ofthese functionalities, such as placing on standby await-
ing data or awaiting available memory space, can be oft-
loaded to the PEs. The task manager is then split into two
types of managers. A first type is associated with each PE and
ensures the support of the data flow mode. The second which
is charged with the allocation of the tasks and their possible
interrupts is called the central task manager. The central task
manager is then responsible for deciding whether or not to
interrupt tasks on standby. However, it is possible to choose
the policy which manages recourse to the central task man-
ager. Thus, it is possible to carry out processing operations
actually in data flow mode, in which the central manager is
not involved.

Another example of execution can be given, that of an
application of Hough transform-based image processing, to
the very dynamic control flow making massive use of paral-
lelism. The aim of the Hough transform is to find, in animage,
contours of simple geometric shapes such as straight line
segments, circles or ellipses. This conventional application in
the field of image processing is difficult to parallelize. This
difficulty is to do with the fact that the results space is neces-
sarily shared between the PEs. Moreover, this application is
greedy in memory space. To carry out the Hough transform,
the image of the contours is traversed in its entirety, without
preferential order on the traversal. For each contour point, it is
necessary to compute the set of straight lines able to pass
through this point. Each straight line is parametrized by two
values a and b, according to the formulation y=ax+b. A
parameter space is thus defined where each point represents a
pair (a,b). The set of the straight lines which can pass through
a contour point of the image is therefore represented by a
straight line in the parameter space. The accumulation of
these straight lines in the parameter space identifies points of
convergence. Each of these points indicates the presence of a
line in the starting image. These points make it possible to
ascertain the position of these straight lines by recovering the
parameters associated therewith. The parallelization of this
algorithm is problematic, since each pixel of the contour
image is associated with a straight line in the parameter space.
Ifit is easy to distribute the input image, the results space is in
essence shared. It is of course possible to make each PE work
on a sub-part of the image and to produce a parameter space
for each of these sub-images. An additional task must then
aggregate all of these spaces so as to form just one. This
solution then poses the problem of the amount of memory
required, since to carry out a parallelization on N PEs, it is
necessary to store at the minimum N+1 images. Such a choice
is, however, not in keeping with the context of embedded
systems where high silicon efficiency is sought. To conclude,
this algorithm can be implemented on an architecture with
shared memory, but this parallelization leads to many
memory conflicts and must therefore be limited to a fairly
weak parallelism. On an architecture with distributed
memory, the memory space must be overdimensioned. The
problem in its generality demands a consideration of the
framework where the memory capacities of the clusters are
indeed below what is required by the application. This frame-
work is in keeping with the state of the art of integration
techniques and video processing requirements. As explained
subsequently, it is possible to parallelize the Hough transform

10

15

20

25

30

35

40

45

50

55

60

65

34

in a more efficient manner by virtue of the present invention,
by simultaneously distributing the starting image and the
parameter space over the various clusters. Each cluster is
responsible for reading an area of the image and for writing a
part of the parameter space. For example this splitting can be
done by making rectangular shaped meshes. The algorithm is
functionally split into two parts on each cluster.

A first part of the algorithm involves reading the pixels of
the area of the image for which the cluster is responsible and
searching for contour points. With each contour point found,
the cluster computes the portion of the parameter space which
will be modified by this point. In the case of the straight line
search, it is known that a point of the starting image becomes
a straight line within the framework of its Hough transform.
The parameters of this straight line can be used to ascertain
the portion to be modified in the Hough space. The cluster
must therefore find the clusters in charge of the area to be
modified. Once this identification has been performed, a
DMA task is activated to dispatch to the clusters concerned a
request to update the area of the parameter space with the
parameters of the straight line. Potentially, each cluster can
dispatch data to all the other clusters, but the computation of
the actual recipients is carried out during the processing.

A second part of the algorithm involves receiving the
requests for updates, which may potentially originate from all
the clusters. For each request, the cluster must recover in
central memory the portion of the parameter space to be
updated before performing the update and then rewriting the
new parameter space to central memory. A certain number of
optimizations are possible at this level, notably it is possible
to retain in local memory a part of the parameter space that
can serve for the following requests. This part of the algo-
rithm can take two forms depending on the capabilities of the
interface with the DRAM controller. According to a first
implementation, the area of interest can be recovered and all
the pixels of the area are then modified. According to a second
implementation, a larger area can be recovered, optionally the
whole of the area for which the cluster is responsible, and the
pixels can then be updated according to whether they do or do
not belong to the parameter straight line. To be efficient, the
second implementation must await the accumulation of a
certain number of requests so as to mask the recovery of a
larger area of interest. To summarize, it is possible either to
effect a complex communication coupled with a simple
update processing, by recovering a fine area of interest, or to
have a more complex processing with a simplified commu-
nication.

It is clearly apparent that the parallelization of the Hough
algorithm is strongly coupled with the communication capa-
bilities of the system. The mechanisms already illustrated in
the two previous applications, such as quota management or
task synchronization, remain valid for the Hough transform.
However, a certain number of discriminating elements exist
in relation to the two previous applications of morphing and
MPEG-2 decoding. First discriminating element, the recipi-
ents of certain communications are computed during process-
ing. If the recipient of a communication has to be computed
during execution, the DMA program must be able to acquire
the parameters allowing it to tailor its processing. As was
already stated previously, the DMA executes a program and
the DMA task is managed by the same mechanisms as a task
of' a PE. Thus the DMA task has a condition of precedence
over the parameters, in the present case this is the recipient.
Once the parameters are known, the DMA program can there-
fore read them in memory and tailor the communication. This
mechanism also supports the data flow mode mentioned pre-
viously. Thus, if the recipients change during execution, the

US 9,164,807 B2

35

DMA program reads them successively in the memory. In the
case where these parameters are not yet available, the task is
placed on standby and is managed by the task controller. It
should also be noted that it is possible that the consumer may
need to identify the cluster which dispatches the data item to
it, so as to be able to tailor the reception processing. This can
be carried out either directly inside the DMA block, or on
passing through the resource manager.

Second discriminating element, the recovery of data con-
tained in central memory can be parametrized during process-
ing. This is in fact the same case as that mentioned in the
“morphing” application for the “prefetch” of the predicted
image blocks. The main difference with a programmed trans-
fer to another cluster is that the parameter is generalized.
Moreover, the interface with the central memory can take
various forms with variable capabilities. Thus, it is possible to
propose a “cluster of access to the central memory”, the
manner of operation of which is based on a similar principle
to the remainder of the system, in particular the manner of
operation of the clusters. It also employs a manager and local
memory. A request of an area of interest in central memory
can then begin with the dispatching of the parameters by a
cluster. The availability of these parameters activates a DMA
task which then carries out the transfer to the central memory.
It is even possible to go further and to furnish the central
memory cluster with a unit allowing the management of the
rights of portion of the memory space and thus to have a
totally homogeneous view at the level of the execution model.
However, if this type of access by area of interest is predomi-
nant in a given application field, it is also possible to special-
ize the structure to include this mode in the DMA of the
central memory.

Third discriminating element, the clusters are ignorant of
the amount of data that they have to process, since the update
requests are directed by the data, related to the presence or
otherwise of contour points. If no mechanism is envisaged,
the task may place itself on standby awaiting data although
the producer has finished its work and is no longer providing
data. It is therefore necessary for the producer to be able to
signal to the consumer that it has finished the task so that the
consumer does not get locked in a standby state. This can be
carried out in various ways. By way of example, the writing of
a particular data item or the dispatching of an event from the
producer to the consumer can be envisaged.

The Hough transform can therefore be efficiently parallel-
ized on the execution model according to the invention, nota-
bly by virtue of the communication devices which have
dynamic support during execution. It is possible to achieve a
compromise between the complexity of the processing opera-
tions and communications, so as to properly distribute the
workloads and to optimize the application.

A fundamental advantage of the present invention is that
the model that it proposes supports both task parallelism and
the data flow mode while maintaining high determinism of
execution. The implementation of the various functionalities
required to support this execution paradigm can take various
forms, of which only a few possible routes demonstrating its
feasibility have been described in the present patent applica-
tion. Notably, the nature of the network and of the processing
or communication elements do not call into question the
model according to the invention, but renders it more or less
relevant and efficient. Another advantage of the present inven-
tion is that the dynamics within a cluster or communications
makes it possible to efficiently implement intensive-compu-
tation applications comprising complex checks. The overlap
between the processing operations and the communications

10

15

20

25

30

35

40

45

50

55

60

65

36

permit intensive “prefetch” policies making it possible to
limit the bottlenecks that data access generally constitutes.

The invention claimed is:

1. A system for executing a given application by executing
tasks in parallel, the system comprising:

a plurality of processing units, the processing units being
organized into a plurality of clusters of units, each clus-
ter comprising a local memory, each local memory com-
prising one or more memory blocks;

means for statically allocating a set of tasks of said appli-
cation to one of said clusters of units, so that said set of
tasks is processed by the same cluster of units from one
execution to another execution of said application;

wherein each cluster of units further comprises a cluster
manager for dynamically allocating each task of a set of
tasks allocated to the cluster to a processing unit in said
cluster and memory blocks in the local memory for
executing said task, so that said set of tasks allocated to
the cluster may be processed by a different processing
unit from one execution to another execution of said
application, the cluster manager including:

a task manager for managing the execution of tasks on
the processing units of the cluster; and
a memory manager for managing the allocation of data
comprised in one or more memory blocks in said local
memory to a set of tasks allocated to the cluster,
said task manager and said memory manager operating
simultaneously and cooperatively;

wherein when a task allocated to a cluster of units has to
consume data produced in another cluster of units, a data
sending task is executed in the cluster where the data are
produced, said data sending task transmitting the data to
a data receiving task executed in the cluster where the
data are consumed, and a memory space dedicated to
communication between the data sending task and the
data receiving task is reserved in the local memory of
one of the two clusters involved.

2. The system as claimed in claim 1, wherein the local
memory that each cluster comprises is dedicated to said clus-
ter.

3. The system as claimed in claim 1, wherein the clusters of
units are disposed on a chip, the clusters of units communi-
cating with one another by way of a network on chip.

4. The system as claimed in claim 1, further comprising a
central memory.

5. The system as claimed in claim 1, further comprising
means for compiling and editing links for statically allocating
tasks to each cluster of units.

6. The system as claimed in claim 1, wherein the data
sending task is temporarily interruptible so as not to saturate
the memory space dedicated to the communication between
the data sending task and the data receiving task.

7. The system as claimed in claim 1, wherein the system is
configured to determine throughput of the data sending task
during compilation and to allocate to the data receiving task
space in the local memory as a function of said throughput.

8. The system as claimed in claim 1, wherein the data
sending task is allocated statically to the cluster where the
data is produced and the data receiving task is allocated
statically to the cluster where the data is consumed.

9. The system as claimed in claim 1, wherein the data
sending task and the data receiving task are executed by
dedicated execution means configured to exchange data
directly with the local memory of each cluster.

10. The system as claimed in claim 7, wherein the cluster
where the data is consumed is configured to dispatch a credit
to the cluster producing the data as a function of an available

US 9,164,807 B2

37

amount in said memory space dedicated to the communica-
tion, the cluster producing the data being configured to adjust
the throughput of the data sending task as a function of the
credit received from the cluster where the data is consumed.

11. The system as claimed in claim 1, wherein, when the
memory space dedicated to the communication between the
data sending task and the data receiving task is used beyond a
given quota, the cluster manager for the cluster executing the
data receiving task is configured to dispatch an interrupt
signal to the cluster manager for the cluster executing the data
sending task, and to dispatch a resume signal when the
memory space is used below the quota.

12. The system as claimed in claim 1, wherein the allocated
memory blocks of the local memory have a fixed size.

13. The system as claimed in claim 1, wherein allocated
memory blocks of the local memory have a variable size and
a defragmentation function is used for maintaining continuity
of an addressing space formed by the local memory.

14. The system as claimed in claim 1, wherein the task
manager of each cluster comprises:

a module for selecting tasks in said set of tasks fulfilling
execution prerequisites, which provide allocatable
tasks;

a scheduling module for mapping said each allocatable
task to an available processing unit of said clusters
according to a scheduling policy.

15. The system as claimed in claim 14, wherein the module
for selecting tasks determines the allocatable tasks fulfilling
execution prerequisites at one and the same time in a mode of
execution of parallel multitask type and in a mode of execu-
tion of data flow type.

16. The system as claimed in claim 14, wherein the execu-
tion prerequisites comprise precedencies of processing

10

15

20

25

30

38

operations or availabilities of data or availabilities of memory
spaces for storing the data produced or events that are local or
external to the cluster.

17. The system as claimed in claim 1, wherein the data
sending task allows to transmit data to several clusters of units
simultaneously, so as to simultaneously supply several con-
suming tasks with the same data.

18. The system as claimed in claim 1, wherein several data
sending tasks are executable simultaneously in one and the
same cluster of units, so as to simultaneously supply several
consuming tasks with different data.

19. The system as claimed in claim 1, further comprising a
manager for managing data sending tasks and the data receiv-
ing tasks of DMA type, so as not to overload the task man-
agers.

20. The system as claimed in claim 1, further comprising at
least one input/output interface.

21. The system as claimed in claim 1, wherein the system
allows execution of a morphing application by executing
tasks in parallel on its processing units.

22. The system as claimed in claim 1, wherein the system
allows execution of an application implementing a Hough
transform by executing tasks in parallel on its processing
units.

23. The system as claimed in claim 1, wherein the system
allows execution of an MPEG decoding application by
executing tasks in pipeline mode.

24. The system as claimed in claim 1, wherein the memory
blocks in the local memory are freed by using a counter for
counting a number of tasks that have consumed data of these
memory blocks.

25. The system as claimed in claim 1, wherein the memory
blocks inthe local memory are freed by using a list of the tasks
that have consumed data of these memory blocks.

#* #* #* #* #*

